
Theoretical and Applied Informatics
ISSN 1896–5334

Vol. 25 (2013), no. 1
pp. 49–66

DOI: 10.2478/thai-2013-0005

Analysis of CHOKe-Family Active Queue Management

ADAM DOMAŃSKI1, JOANNA DOMAŃSKA2, JERZY KLAMKA2

1 Institute of Informatics
Silesian Technical University

Akademicka 16, 44–100 Gliwice, Poland
adamd@polsl.pl

2 Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

Baltycka 5, 44–100 Gliwice, Poland
{joanna,jklamka}@iitis.gliwice.pl

Received 1 February 2013, Revised 10 April 2012, Accepted 10 May 2013

Abstract: In the article we study a model of network transmissions with Active Queue
Management in an intermediate IP router. We use the OMNET++ discrete event simulator to model the
varies variants of the CHOKe algoithms. We model a system where CHOKe, xCHOKe and gCHOKe are
the AQM policy. The obtained results shows the behaviour of these algorithms. The paper presents also
the implementation of AQM mechanisms in the router based on Linux.

Keywords: Computer Networks, Active Queue Management, CHOKe algorithm

1. Introduction

In order to meet the demands of providing high quality services, IETF proposes
to implement in routers conguestion detection mechanisms and reacting appropriately
when they occur. The best known mechanism of this type is Random Early Detection
algorithm [3]. For this mechanism packet can be can be dropped from queue if there
is a risk of the router overloading. This solution has many advantages inter alia RED
prevents global synchronization of TCP sources. This effect is achieved by co-opera-
tion between the RED and congestion control mechanisms built into TCP transmitters
(eg. New Reno). When the packet is droped the TCP source decreased the transmis-
sion speed. This mechanism does not work well with streams without conqestion
control and for TCP streams which does not control congestion basing on packet
loss (eg. Vegas). These mechanisms when competing for bandwidth with the New

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

50

Reno transmitters behaves more aggressively. This phenomenon has resulted in AQM
algorithms, distinguishing data streams. For this algorithms the probability of drop-
ing the packet from queue is proportional to the number of packets from this stream
in the bufor. In this article we present the fi ve variants of CHOKe algoritm. Using
 OMNET++ discrette event simulator we present the behavior of these mechanisms.

The rest of this article is organized as follows. The section 2 describes two
variants of CHOKe algorithms. The section 3 presents proposed simulation models
and shows obtained results. The section 4 discusses the implementation of CHOKe/
AQM algorithms in Linux. The conclusions are presented in section 5.

2. The CHOKe algorithms

CHOKe is stateless AQM algorithm similar to RED used incoming packages to
punish streams with the highest demand for bandwidth [17].

Just as in the case of RED, there are two threshold values: Minth and maxth. When
a new package arives the new average queue length is calculated. When the average
queue length is less than Minth, all packets are placed in the buffer. When the average
queue length is greater than Minth, CHOKe pulls randomly one packet from the FIFO
buffer (”CHOKe victim”) and verifi es if the package comes from the same stream as
an incoming packet. If the both packets belong to the same stream, both are removed
(this situation id called ”CHOKe hit”). Otherwise, the randomly selected package
(”CHOKe victim”) is returned to the buffer and the arived packet is placed in the
queue with P probability. This probability is calculated in the same manner as in the
case of RED algorithm. This event is called the ”choke miss”. The fi gure 1 presents
the CHOKe algorithm. The Front CHOKe algorithm introduces modifi cations to the
algorithm CHOKe. This algorithm does not drow a packet. The fi rst packet in the
queue is a ”CHOKe victim” [17]. Another very similar modifi cation of CHOKe algo-
rithm is Back CHOKe. Its principle of operation is obvious [17]. This modifi cation
takes the last packet from the queue and compare its with incoming packet (fi gure 2).

Algorithm xCHOKe remembers ”CHOKe hit” events in the special table called
”lookup table” [18]. Algorithm starts to work when the queue length is between Minth
and Maxth. For all incoming packets algorithm scan ”lookup table” to fi nd fl ow id
identical to the fl ow id of incoming packet. If the search is successful (”table hit”)
the incoming packet is dropped with p* probability. Next, arrival packet is compared
to packet drown from queue (”CHOKe victim”). if both have the same stream id,
both are removed and xCHOKe scan ”lookup table” again. I looks for id of fl ow of
dropped packets and increment ”hit counter” parameter assocciated with fl ow id of
dropped packet. If the search is unsuccesfull algorithm creates a new row in the table
with ”hit counter” equal to one (fi gure 3).

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

51

Fig. 1. Diagram of the CHOKe algorithm

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

52

Fig. 2. Diagram of the Front (Back) CHOKe algorithm

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

53

Probability of dropping packet table hit is p* = MIN (1, pRED * 2n, where pRED is
prabability calculating by RED algorithm, n is ”hit counter” for searched fl ow id.

Geometric Choke (gCHOKe) is a modifi cation of the CHOKe algorithm proposed
by Addisu Eshete i Yuming Jiang from Norwegian University of Science and Tech-
nology in Trondheim [10]. This algorithm has the additional, confi gurable parameter
maxcomp Î [1..∞). This parameter determines the maximum number of successful
comparisons. The algorithm compares the incoming packet with a random packet
from the queue (”CHOKe Victim”). The comparison is successful when both packag-
es are from the same stream. Comparison ends when: the comparison is unsuccesfull
or the number of comparisons is maxcomp. In this case, all matching packets, and the
incoming are removed from the queue. If the fi rst match is not successful, the random
packet (”CHOKE Victim”) comes back to the queue. The arrival packet is placed in
the queue with P probability (fi gure 4). The CHOKe algorithm is a special case of
gCHOKe for maxcomp = 1.

3. Simulation results

Research has been conducted in the OMNET++ simulation environment of
discrete events. To emphasize the importance of using self-similar sources of traffi c
the comparative research has been carried out for the self-similar and poisson source.
Input traffi c intensity was chosen as α = 0.5 or α = 0.1, and due to the modulator
characteristics, the Hurst parameter of self-similar traffi c was fi xed to H = 0.8. For
both considered in comparisons cases, i.e. for geometric interarrival time distribution
(which corresponds to Poisson traffi c in case of continuous time models) and self-
similar traffi c, the considered traffi c intensities are the same. A detailed discussion of
the choice of model parameters is also presented in [7].

The parameters of AQM buffer:

• Minth = 100,

• Maxth = 150,

• buffer size (measured in packets) = 200,

• weight parameter α = 0.007.

For parameter α = 0.5 the traffi c generated by a single source was too large. For
experiments with a single source queue occupancy fast exceeds the parameter Maxth
and ”CHOKe-victim” always was dropped. So the rest part of the article describes
results obtained for α = 0.1.

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

54

Fig. 3. Diagram of the xCHOKe algorithm

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

55

Fig. 4. Diagram of the gCHOKe algorithm

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

56

The results are presented in tab. 1. The obtained results were grouped according
to the selected CHOKe algorithm, type of sorce (geometrical or selfsimilar) and num-
ber of sources.

As can be seen for 5 geometrical sources (regerdless of type od CHOKe) we
received a zero number of dropped packets and a small waiting time. This situation
is caused by small queue load (see fi gure 5). Average queue length never exceeds
Minth value. The situation is quite different for selfsimilar sources (fi gure 6). This is
due to the fact that the selfsimilar sources (with the same parameters as the geomet-
rical sources) generate more traffi c (these results confi rmed previous studies [7][8]).
The queue exceeds the Minth size. Packages are destroyed by the CHOKe and RED
mechanisms. However, the queue occupancy distribution is very uneven (fi gure 6
(left)). When the number of streams increases the number of packets discarded by
CHOKe decreases (decreases the probability of selecting ”CHOKE victime” from the
same source). Interestingly the average waiting time does not increase signifi cantly
(fi gure 6 (right), fi gure 9(left)). What proves the thesis that the choke is suitable for
aggressive streams management. The streams generating a larger number of data lose
more packets in the overloading buffer. The above-mentioned arguments are true only
for self-similar fl ows. The results can depend on the statistical distribution of packets
in the buffer. This thesis proves the extremely large number of packets discarded
by the Back CHOKe mechanism. Algorithms such xCHOKe and gCHOKe can drop
more packets in one step of algorithm. What causes an increase in the number of lost
packets. The queue occupancy and the average waiting time distributions are unreg-
ular (fi gures 7, 8, 9).

Source Nb of sources Algorithm Droped by RED Droped by CHOKe Avg waiting time

geo 5 CHOKe 0 0 6.56175

geo 10 CHOKe 78827 678960 240.423

geo 15 CHOKe 201455 779864 374.484

self 5 CHOKe 379747 1788726 170.6

self 10 CHOKe 2635 480420 171.703

self 15 CHOKe 1835 318191 172.104

geo 5 fCHOKe 0 0 6.56175

geo 15 fCHOKe 202114 777111 353.554

self 5 fCHOKe 15872 420695 174.505

self 15 fCHOKe 16317 318318 190.382

geo 5 bCHOKe 0 0 6.56175

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

57

Source Nb of sources Algorithm Droped by RED Droped by CHOKe Avg waiting time

geo 15 bCHOKe 186 2644617 191.701

self 5 bCHOKe 10 1950025 124.281

self 15 bCHOKe 6 648573 101.832

geo 5 xCHOKe 0 0 6.56175

geo 15 xCHOKe 208 2644061 162.98

self 5 xCHOKe 12 1950320 81.9792

self 15 xCHOKe 28 637522 113.098

geo 5 gCHOKe 0 0 6.56175

geo 15 gCHOKe 1201 423 265.371

self 5 gCHOKe 4095300 300788 90.5272

self 15 gCHOKe 611768 35950 85.63

Tab. 1. The obtained results: number of dropped packets and average waiting times

4. Linux implementation

This chapter presents the details of the CHOKe algorithms implementation in the
real software router based on the Linux. The main objective of this stage of the study
has been the confi rmation of simulation results in the real working network. This
chapter provides a description of the created program and obtained results.

Fig. 5. Queue length distribution (left) and Waiting times distribution (right), CHOKE, Front CHOKe,
gCHOKe, xCHOKe queues, geometric source, α = 0.1, μ = 0.25, w = 0.007, 5 sources

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

58

Fig. 6. Queue length (left) and Waiting times distribution (right),

CHOKE, fCHOKe queues, selfsimilar source,
α = 0.1, μ = 0.25, w = 0.007, 5 sources

Fig. 7. Queue length (left) and Waiting times distribution (right),

xCHOKE, gCHOKe queues, selfsimilar source,
α = 0.1, μ = 0.25, w = 0.007, 5 sources

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

59

Fig. 8. Waiting times distribution CHOKe, fCHOKe (left),

xCHOKE, gCHOKe (right) queues, geometric source,
α = 0.1, μ = 0.25, w = 0.007, 15 sources

Fig. 9. Waiting times distribution CHOKe, fCHOKe (left),

xCHOKE, gCHOKe (right) queues, selfsimilar source,
α = 0.1, μ = 0.25, w = 0.007, 15 sources

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

60

The implementation was based on the Iptables – a fundamental tool to manage
data streams in Linux. The total packets fl ow in the iptables is shown in fi gure 10.

Iptables is used to redirect all traffi c to the user queue supported by the application
(in user space). This support has been created using netfi lter framework. The netfi lter
library performs the following tasks:

• connection to iptables,
• getting packets from the queue,
• send information to iptables about decision of throwing packet.

The entire program is divided into two threads synchronized by a special sema-
phore with a maximum size of one, called mutex. Code of the algorithm is as follows:

while true:
wait for packet in buffer:
process the packet

Diagram of the program is shown in fi gure 11. The confi guration of the iptables
is as follows:

iptables -I FORWARD 1 -j QUEUE

This confi guration is equal to:

iptables -I FORWARD 1 -j NFQUEUE --queue-num # traffi c is directed to the buffer 0.

Execution of the program is as follows:

./aqmrun [-m size] [-M size] [-Q number] [-w weight] [-b size] [-c number] [r] [f] [b] [

where:

• m – minth
• M – maxth
• Q – netfi lter queue number (default 0 - this parameter depends on the Iptables

confi guration)
• w – weight parameter α (default 0.002)
• b – buffer size (default 2000)
• c – maxcomp parameter for gCHOKe (default 1)
• r – standard CHOKe (default)
• f – Front CHOKe
• b – Back CHOKe
• g – Geometric CHOKe

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

61

Figure 12 displays the experiment topology of the network. The computer between
two laptops is the most important part of the network. It works as a router with AQM
algorithms implemented inside. The router running the Linux operating system and
its main task is forwarding packets between two laptops. One of them is connected to
access point 802.11b. This is old type of AP and works with speed 11 Mb/s network.
This connection is the bottleneck. The second laptop is connected to 100 Mb/s
Ethernet. During the test the laptop connected to the Ethernet link transmits data to
the second laptop and the behaviour of the AQM algorithms is observed.

Fig. 10. The packets movement through the Iptables

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

62

Fig. 11. Diagram of the program

Fig. 12. The network used during the research

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

63

Figure 13. shows the buffer occupancy for CHOKe and gCHOKe algorithms. The
algorithm gCHOKe fi lls up the queue below the parameter maxth = 15 and causes
much greater fl uctuations.

Fig. 13. The buffer occupancy for CHOKe (left) and gCHOKe (right) algorithms

5. Conclusions

In this paper we presented the problem of the CHOKe queue. We consider the
problem of choosing the variant of the CHOKe algorithm for router queue behaviour.
During the tests we analyzed the following parameters of the transmission with
AQM: the number of rejected packets (by RED or CHOKe algorithm) and waiting
times in queues. Our researches were carried out using the Discrette Event Simulator
OMNET++. In the studies we also reconsider the problem of agressive (need more
bandwith) sources. The simulations showed that the basic CHOKe and Front Choke
algorithms rejected relatively small numbers of packets, while others practically
throwing most of them. In the simulations, we took into account the small number
of sources. For a small number of streams probability of selecting a good CHOKe
victim is too large. Decrease in the number of losses with the number of sources can
draw a conclusion that the CHOKe algorithms help to maintain the queue stability
in the case of aggressive fl ows whose packets occupy the most space in the queue.
In our study we have not considered the problem of sources with different intensity.
We will deal with this issue in future researches. In this article we have additionally
presented the behavior of this mechanisms involving the real working routers. Results
obtained in the real network operation confi rmed the results obtained in the simulation
environment.

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

64

Acknowledgements

This research was partially fi nanced by Polish Ministry of Science and Higher
Education project no. N N516479640

References

 1. D.R. Augustyn, A. Domański, J. Domańska, Active Queue Management with non linear
packet dropping function, 6th International Conference on Performance Modelling and
Evaluation of Heterogeneous Networks HET-NETs 2010.

 2. D.R. Augustyn, A. Domański, J. Domańska, A Choice of Optimal Packet Dropping
Function for Active Queue Management, Communications in Computer and Information
Science, vol. 79, Springer 2010.

 3. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S.,
Jacobson, V., Minshall, G., Partridge, C., Peterson, L.,Ramakrishnan, K., Shenker, S.,
Wroclawski, J., Zhang, L., Recommendations on queue management and congestion
avoidance in the internet, RFC 2309, IETF (1998)

 4. W. Chang Feng, D. Kandlur, and D. Saha, Adaptive packet marking for maintaining
end to end throughput in a differentiated service internet, IEEE/ACM Transactions on
Networking, vol. 7, no. 5, 1999.

 5. J. Chen, F. Paganini, R. Wang, M.Y. Sanadidi, M. Gerla, Fluid-fl ow Analysis of TCP
Westwood with RED, GLOBECOM 2004.

 6. T. Czachorski, K. Grochla, F. Pekergin, Stability and Dynamics of TCP-NCR (DCR)
protocol in presence of UDP Flows, in: Wireless Systems and Mobility in Next Gener-
ation Internet, LNCS no. 4396, pp.241-254, Springer 2007.

 7. J. Domańska, A. Domański, T. Czachórski, The Drop-From-Front Strategy in AQM’,
Lecture Notes in Computer Science, vol. 4712/2007, Springer Berlin/Heidelberg, 2007.

 8. J. Domańska, A. Domański, T. Czachórski, Implementation of modifi ed AQM mecha-
nisms in IP routers’, Journal of Communications Software and Systems, vol. 4, no. 1,
March 2008.

 9. J. Domańsk, Procesy Markowa w modelowaniu natężenia ruchu w sieciach kompute-
rowych, PhD thesis, IITiS PAN, Gliwice, 2005.

 10. A. Eshete, Y. Jiang, Generalizing the CHOKe fl ow protection, Computer Network
Journal, 2012.

 11. C. V. Hollot, Vishal Misra, Don Towsley, A control theoretic analysis of RED, IEEE/
INFOCOM, 2001.

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

65

 12. C. V. Hollot, V. Misra, D. Towsley, W.-B. Gong, On Designing Improved Controllers
for AQM Routers Supporting TCP Flows, IEEE INFOCOM 2002.

 13. C. Kiddle, R. Simmonds, C. Williamson, B. Unger, Hybrid packet/fl uid fl ow network
simulation, Parallel and Distributed Simulation, 2003.

 14. C. Liu, R. Jain, Improving explicit congestion notifi cation with the mark-front strategy.
Computer Networks, 35(2-3), 2000.

 15. M. May, C. Diot, B. Lyles, J. Bolot, Infl uence of active queue management parameters
on aggregate traffi c performance, Technical report, Research Report, Institut de Re-
cherche en Informatique et en Automatique, 2000.

 16. V. Misra, W.-B. Gong, D. Towsley, Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED, ACM SIGCOMM, 2000.

 17. R. Pan, B. Prabhakar, K. Psounis, CHOKe, A stateless AQM scheme for approximating
fair bandwidth allocation, IEEE INFOCOM, 942-952, 2000.

 18. Ch. Panninder, Ch. Shobhit, G. Anurag, J. Ajita, K. Abhishek, S. Huzur, S. Rajeev,
XCHOKe: malicious source control for congestion avoidance at Internet gateways,
ICNP 2002.

 19. Pengxuan Mao, Yang Xiao, Shaohai Hu, Kiseon Kim, Stable parameter settings for
PI router mixing TCP and UDP traffi c, IEEE 10th International Conference on Signal
Processing (ICSP), 2010.

 20. www.scipy.org.

 21. S. Rahme, Y. Labit, F. Gouaisbaut, An unknown input sliding observer for anomaly
detection in TCP/IP networks, Ultra Modern Telecommunications & Workshops, 2009.

 22. L. Wang, Z. Li, Y.-P. Chen, K. Xue, Fluid-based stability analysis of mixed TCP
and UDP traffi c under RED, 10th IEEE International Conference on Engineering of
Complex Computer Systems, 2005.

 23. T. K. Yung, J. Martin, M. Takai, R. Bagrodia, Integration of fl uid-based analytical
model with Packet-Level Simulation for Analysis of Computer Networks, SPIE, 2001.

Analiza różnych wariantów mechanizmu CHOKe

Streszczenie

W artykule został przedstawiony model sieciowej transmisji danych poprzez
router z zaimplementowanymi mechanizmami Aktywnego Zarządzania Kolejką
(AQM). Badania zachowania mechanizmów AQM zostały przeprowadzone przy uży-
ciu symulatora zdarzeń dyskretnych OMNET++. Uzyskane wyniki zostały zweryfi ko-

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

66

wane w środowisku rzeczywistym. W oparciu o system operacyjny Linux stworzono
programowy router implementujący mechanizmy wcześniej przebadane w środowi-
sku symulacyjnym. Przeprowadzono analizę zachowania algorytmów AQM z rodziny
CHOKe (CHOKe, xCHOKe, gCHOKe). W badaniach rozważano problem wpływu
tych mechanizmów na tzw. agresywne (potrzebujące większego pasma) źródła trans-
misji danych.

Unauthenticated | 89.73.89.243
Download Date | 12/17/13 10:10 PM

