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UNDERGROUND LEAD-ZINC MINE PRODUCTION PLANNING USING FUZZY STOCHASTIC 
INVENTORY POLICY 

PLANOWANIE WYDOBYCIA CYNKU I OŁOWIU W KOPALNIACH PODZIEMNYCH 
Z WYKORZYSTANIEM PODEJŚCIA STOCHASTYCZNEGO Z ELEMENTAMI LOGIKI ROZMYTEJ 

DO OKREŚLANIA NIEZBĘDNEGO POZIOMU ZAPASÓW

Methodology for long-term underground lead-zinc mine planning based on fuzzy inventory theory is 
presented in this paper. We developed a fuzzy stochastic model of inventory control problem for planning 
lead-zinc ore production under uncertainty. The final purpose of this article is to find the optimal quantity 
of mined ore that should be stockpiled, in order to enable “feeding” of mineral processing plant in cases 
when the production in underground mine is interrupted, by using Possibilistic mean value of fuzzy 
number for defuzzing the fuzzy total annual inventory costs, and by using Extension of the Lagrangean 
method for solving inequality constrain problem. The different types of costs involved in mined ore in-
ventory problems affect the efficiency of production scheduling. Dynamic nature of lead and zinc metal 
price is described by Ornstein-Uhlenbeck stochastic mean reverting process. The model is illustrated 
with a numerical example.

Keywords: underground mine, production planning, ore inventory policy, uncertainties, fuzzy-stochastic 
modelling

W pracy przedstawiono metodologię długoterminowego wydobycia cynku i ołowiu w kopalniach 
podziemnych z wykorzystaniem podejścia stochastycznego z elementami logiki rozmytej do określania 
wymaganego poziomu zapasów. Opracowaliśmy model stochastyczny z wykorzystaniem elementów logiki 
rozmytej do kontroli zapasów w planowaniu wydobycia cynku i ołowiu w warunkach niepewności. Celem 
końcowym pracy jest określenie optymalnej ilości wydobywanej rudy, którą należy zachować jako zapas 
tak  aby zapewnić odpowiednie jej dostawy do zakładu przeróbczego nawet w przypadku przerwania 
wydobycia w kopalni podziemnej, opierając się na posybilistycznej  wartości średniej liczby rozmytej 
i wyostrzeniu całkowitych rocznych kosztów zapasów. Wykorzystano także rozszerzenie metody Lagran-
ge’a do rozwiązywania problemu więzów w nierówności. Różnorakie koszty związane ze składowaniem 
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zapasów wydobywanej rudy mają wpływ na wydajność planowanej produkcji. Dynamiczne zmiany cen 
cynku i ołowiu zostały określone z wykorzystaniem rewersji średniej stochastycznej, w pracy Ornsteina- 
Uhlenbecka. Zaprezentowano przykład numeryczny jako ilustrację modelu.

Słowa kluczowe: kopalnia podziemna, planowanie produkcji, określanie niezbednego poziomu zapasów 
rudy, warunki niepewności, modelowania stochastyczne z elementami logiki rozmytej

1. Introduction

A mining production system is commonly composed of two main producing units. The 
first unit is related to mine and the second to mineral processing plant. The mine produces the 
ore which is further processed by the mineral processing plant. The final product is the metal 
concentrate which is sold on the market. The concentrate is produced on a continuous produc-
tion line while the ore is produced in discontinuous way, i.e., in production cycles. Therefore, 
ore is stockpiled until it is needed for processing. This paper treats only mine producing unit, 
i.e. underground mine.

Underground mining is used when the ore deposit is located deep under the earth’s surface. 
Underground mine represents a very complex technological system composed of many subsys-
tems such as: drilling and blasting, supporting, transport and haulage, ventilation, dewatering, 
etc. (see Fig. 1).

Interruption in any of these subsystems directly causes interruption of production. For ex-
ample, in the underground metallic ores mines there is a presence of very harmful gases produced 

Fig. 1. Schematic view of underground mine
(source: H. Hamrin, Guide to Underground Mining Methods and Applications, Stockholm; Atlas Copco, 1997)
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by diesel powered machines and if the main ventilation system is broken down all miners must 
put on self rescue apparatus and take leave of the mine immediately. The situation is even more 
serious in the underground coal mines where there is a presence of methane (highly explosive gas). 
Another example is related to the stability of main transport roadways which directly depends on 
the efficiency of the supporting systems. High values of the stress around the roadway can cause 
the deformation and even close of roadway. In such situations the efficiency of the transportation 
system of personnel and materials as well as the haulage of mined ore is considerably reduced. 
Repairment of damaged roadway can last days even weeks, entailing interruption of production 
because there is no alternative direction of transport. Such accidents are classified into group 
of unplanned production interruptions. Certainly the environment of production associated 
with the mining company is unique when compared with environment encountered by typical 
manufacturing companies. As in any manufacturing company, there are planned interruptions 
of production so there are planned interruptions of production in every underground mine and 
they are classified into group of planned production interruptions. Both groups are characterized 
by loss of production time. 

In such environment it is necessary to create the plan of production in order to satisfy mar-
ket demands with minimum costs. This problem was treated in different ways. Gillenwater et 
al. (1995) developed the mine production scheduling model based on the aggregate production 
planning. The model presented in their research use the coal industry as an example. Martinez 
and Newman (2011) have created a mixed-integer program to schedule long- and short-term 
production at LKAB’s Kiruna mine, an underground sublevel caving mine located in northern 
Sweden. The model minimizes deviations from monthly preplanned production quantities while 
adhering to operational constraints. Optimization is based on the decomposition heuristic that, 
on average, obtains better solutions faster than solving the model directly. Smith et al. (2003) 
incorporated a variety of features into their lead and zinc underground mine model, including 
sequencing relationships, capacities and minimum production requirements. However, they 
significantly reduced the resolution of the model by aggregating stopes into larger blocks. The 
resulting model, with time periods of one year length, maximizes net present value over the life 
of the mine (here, 13 years). Carlyle and Eaves (2001) presented a model that maximizes revenue 
from Stillwater’s platinum and palladium mine which uses the sublevel stoping mining method. 
The problem focuses on strategic mine expansion planning, so the integer decision variables 
schedule the timing of various mining activities: development and drilling and stope prepara-
tion. Sarin and West-Hansen (2005) schedule a coal mining operation to maximize net present 
value without penalties for irregular schedules. They expedite the solution time for their model 
with Bender’s decomposition-based methodology. Little and Topal (2011) review optimization 
studies, focusing on model reduction approaches, which employ Mixed Integer Programming 
techniques for simultaneous optimization of stope layouts and underground production sched-
uling. Four theories are presented to reduce the number of variables and complex constraints 
without comprising its mathematical integrity. Azimi et al. (2012) applied multi-criteria ranking 
to select the optimal open pit mining cut-off grade strategy under metal price uncertainty. Gligoric 
et al. (2011) developed a hybrid model of evaluation of mine capacity expansion project in an 
underground lead-zinc mine using simulation and fuzzy numbers.

Finally, the company is interested in determining when to produce a batch of ore and how 
many ore to produce in each batch. This organizational problem can be solved by effective inven-
tory control system. This is essential for mining company for many reasons, such as, meeting 
metal concentrate supply contracts, and optimization of amount of money tied up in ore inventory.
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2. Basic concepts of fuzzy sets

In order to deal with the vagueness of human thought, Zadeh (1965) first introduced the 
fuzzy set theory. This theory was oriented to the rationality of uncertainty due to imprecision or 
vagueness. A fuzzy set is a class of objects with continuum of grades of membership. Such a set 
is characterized by a membership (characteristic) function which assigns to each object a grade 
of membership ranging between zero and one. A fuzzy set is an extension of a crisp set. Crisp sets 
only allow full membership or non-membership at all, whereas fuzzy sets allow partial member-
ship. In other words, an element may partially belong to a fuzzy set. The role of fuzzy sets is 
significant when applied to complex phenomena not easily described by traditional mathemati-
cal methods, especially when the goal is to find a good approximate solution (Bojadziev, 1998). 
Modelling using fuzzy sets has proven to be an effective way of formulating decision problems 
where the information available is subjective and imprecise (Zimmermann, 1992). A tilde “~” is 
placed above a symbol if the symbol represents a fuzzy set.

Suppose that X = {x} is a universe, i.e., the set of all possible (feasible, relevant) elements to 
be considered. Then a fuzzy subset (or a fuzzy set, for short) A in X is defined as a set of ordered 
pairs {(x, μA(x))}, where x  X and μA : X → [0,1] is the membership function of A; μA : X  [0,1] 
is the grade of membership of x in A, from 0 for full nonbelongingness to 1 for full belonging-
ness trough all intermediate values (Seda, 2005). It is convenient to denote fuzzy set defined in a 
finite universe, say A in X = {x1,..., xn} as A = μA(x1)/x1 + ... + μA(xn)/xn where “μA(xi)/xi” (called 
a singleton) is a “grade of membership/element” pair and “+” is used in the set-theoretical sense.

The γ-cut of fuzzy set A in X is defined as an ordinary set Aγ  X such that 

     ,    0,1| AA x X x         (1)

Similarly, the γ-level cut of a fuzzy set A in X, denoted by Aγ, is the crisp subset of X that 
contains all of the elements of X with exactly the given degree of membership γ:

     ,    0,1| AA x X x         (2)

The level set of A, denoted LA, is a subset [0,1] containing the values γ that determine dis-
tinct γ-cuts:

     0,1    for some  |A AL x x X       (3)

Any fuzzy subset of the real line R, whose membership function satisfies the following 
conditions, is a generalized fuzzy number M

~
, (Ritha et al., 2011)

(1) μM~ (x) is a continuous mapping from R to the closed interval [0,1],
(2) μM~ (x) = 0, −∞ < x ≤ a,
(3) μM~ (x) is strictly increasing on [a, b],
(4) μM~ (x) = wM, a ≤ x ≤ c,
(5) μM~ (x) is strictly decreasing on [b, c],
(6) μM~ (x) = 0, c ≤ x < +∞, where 0 < wM ≤ 1, and a, b, c are real numbers. Also this type 

of generalized fuzzy number is denoted as M
~

(a,b,c).

There are many possibilities to use different fuzzy numbers according to the situation. Tri-
angular fuzzy numbers (TFN) are very convenient to work with because of their computational 
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simplicity and they are useful in promoting representation and information processing in fuzzy 
environment. In this paper, we use TFNs.

Triangular fuzzy numbers can be defined as a triplet (a,b,c). The parameters a, b and c re-
spectively, indicate the smallest possible value, the most promising value and the largest possible 
value that describe a fuzzy event. A triangular fuzzy number M

~
 is shown in Figure 2.

Fig. 2. Triangular fuzzy number
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Triangular fuzzy numbers can be used to perform common mathematical operations. 
The basic fuzzy arithmetic operations on two triangular fuzzy memberships A~ = (a1,a2, a3) 
and B~ = (b1, b2, b3) are defined as follows: (1) inverse: A~–1 = (1/a3,1/a2,1/a1); (2) addi-
tion: A~  B~ = (a1 + b1, a2 + b2, a3 + b3); (3) subtraction: A~ – B~ = (a1 – b3, a2 – b2, a3 – b1); 
(4) scalar multiplication:  φ > 0, φ  R, φ · A~ = (φ · a1, φ · a3, φ · a3); (5) multiplication: 
A~  B~ = (a1 · b1, a2 · b2, a3 · b3); (6) division: A~ /B~ = (a1/b3, a2/b2, a3/b1).

Let us assume that A~i, i = 1,2,...,n be sample of the random variable of fuzzy number. By 
the extension principle of fuzzy sets (Rivera et al., 1995), (Zadeh, 1965) and definition of the 
triangular fuzzy number, the average operation for fuzzy number A~i is as follows:

 1
/n

ii
A A n


    (5)

An important concept related to the applications of fuzzy numbers is defuzzification, which 
converts a fuzzy number into a crisp value. Such a transformation is not unique because different 
methods are possible. The most commonly used defuzzification method is the centroid defuzzi-
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fication method, which is also known as center of gravity or center of area defuzzification. The 
centroid defuzzification method can be expressed as follows (Yager, 1981):

 
     0 /

c c

A A
a a

x A x x dx x dx    
  (6)

where x–0(A~)  is the defuzzified value. The defuzzification formula of triangular fuzzy 
numbers (a, b, c) is

    0 / 3x A a b c    (7)

and it will be used in this paper.

3. Fuzzy model

3.1. Model in crisp sense

In this chapter, we introduce the fuzzy inventory model, and find the optimal solution, i.e., 
optimal crisp quantity of mined ore that should be stockpiled. Because inventory polices affect 
profitability, the choice among policies depends upon their relative profitability. Some of the 
costs that determine this profitability are the producing costs, holding costs and shortage costs. 
First, we deal with an inventory model in crisp environment. In this model, there are some as-
sumptions: the economic order quantity (EOQ) approach is used as a base of model; the way of 
ore production is cyclical; the demand is not changed over time of plan; time of plan is constant; 
shortages are not allowed; the ore production capacity of underground mine is greater than the 
ore demand rate, and enables the ore inventory to be replenished in continuous way.

The cost of producing an amount of ore y, per cycle, can be represented by a function 
A(y). The simplest form of this function is one that is directly proportional to the amount of the 
ore mined. Another common assumption is that A(y) is composed of two parts: the first term is 
directly proportional to the amount of the ore mined, and the second term is a constant K for y 
positive and is 0 for y = 0. For this case,

 

  
0                if  0

, ,
     if  0,

y
A y x p z p xa y K a K y p z

p z


        

 (8)

where
 y — the ore production (t/day),
 K — the costs involved in setting up to start a production cycle ($/cycle),
 a — the unit cost of production ($/t),
 x — the inventory level (t/day),
 p — the ore production capacity rate (t/day),
 z — the ore demand rate (t/day).

The holding cost (the storage cost) represents all the costs associated with the storage of the 
ore inventory until it is used. Included are the cost of stockpiling and capital tied up. The holding 
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cost can be assessed either continuously or on a period by period basis. In our model we use con-
tinuous approach. The form of the holding cost function per one production cycle is as follows:

 
 

2 2

1
, , ,     

2
con i i

i con
i i

G M x pB x p z b V p z
z p zm




 
           

  (9)

where
 b — the unit cost of carrying inventory in stock ($/tday),
 φ — percentage of the capital tied up (%), (as a percentage of the value of the ore),
 Gi — the grade of the ore mined (%),
 Mi — the mill recovery rate (%),
 mi

con — the metal content of the concentrate (%),
 Vi

con — the value of i-th metal concentrate ($/t),

  
     for         

  for          

con mr
Pb Pb Pbcon

i con mr
Zn Zn Zn

P m m Pb
V

P m m Zn

   
 

 (10)

where
 PPb — the lead metal price ($/t),
 PZn — the zinc metal price ($/t),
 mPb

con — the lead metal content of the concentrate (%),
 mZn

con — the zinc metal content of the concentrate (%),
 mPb

mr — the lead metal recovery rate (%),
 mZn

mr — the zinc metal recovery rate (%).

The difference in equation forms for Pb and Zn arises from different recovery during the 
smelting process.

The ore production capacity rate, directly depends on metal concentrate demands, and can 
be defined as follows:

 
 z ,      max ,

con con
Pb Pb Zn Zn

Pb Pb Zn Zn

z m z m
p q z z

G M G M
  

    
   

 (11)

where
 q — coefficient enables p > z, (q > 1), in this way the inventory replenishment is con-

tinuous,
 zPb — lead metal concentrate demand (t/day),
 zZn — zinc metal concentrate demand (t/day).

Therefore, total costs function per cycle is defined as follows:

 

2 2

1

( , ) ( , ) ( , )

2 1
con i i

i con
i i

C x z A x z B x z

G M x qa x b V K
z qm




  

  
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
 (12)
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so the total costs function per unit time is:

 
 

2 2

1

1, ,
2 1

con i i
i con

i i

G M x q z T qC x z T a x b V K
z q x qm




                         
  (13)

where T — time horizon (day)

Algebraically,

 
    2

1

1
, ,

2
con i i

i con
i i

z q G M xC x z T a z K b V T
x q m




    
               

  (14)

3.2. Model in fuzzy environment

In the crisp inventory models, all parameters in the total cost are known and have definite 
values without ambiguity. But in the reality, it is not so sure. Hence, it is necessary to consider the 
fuzzy inventory models (Ritha et al., 2011). Dutta et al. (2007) considered a continuous review 
inventory system, where the annual average demand was treated as a fuzzy random variable. 
(Mahata & Goswami, 2006) developed a fuzzy production-inventory model with permissible 
delay in payment. They assumed the demand and the production rates as fuzzy numbers and 
defuzzified the associated cost in the fuzzy sense using extension principle.

Uncertainty in the process of production planning is commonly evaluated with respect to 
internal and external parameters. Internal parameters are those that can be governed by inside 
considerations while external are determined by outside considerations. In our case internal 
parameters are: intpars(K, a, b,φ, q, Mi, mi

con, mi
mr ). External parameters are: extpars(zi, Pi, Gi). 

To decrease uncertainty related to production planning, some of these input parameters are 
quantified by triangular fuzzy numbers and some by a specific stochastic behaviors (see Table 1). 

TABLE 1

Quantification of input parameters

Parameter Quantifi cation
K TFN(min, central, max)
a TFN(min, central, max)
b TFN(min, central, max)
φ TFN(min, central, max)
q TFN(min, central, max)
Gi Normal distribution
Mi Uniform distribution
zi TFN(min, central, max)
Pi Mean reversion process

The market risks related to metal price are modeled with a special dynamic stochastic pro-
cess; a mean reversion process. The past values of the changes in this risk parameter help predict 
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the future. We will use a model where the metal spot price is assumed to follow an Ornstein-
Uhlenbeck stochastic mean reverting process:

  dP k P P dt dW    (15)

where P– is the long-run equilibrium metal price, k measures the speed of mean reversion to the 
long run mean log price P–, dW is an increment to a standard Brownian motion and σ refers to 
the price volatility rate, for more details see (Schwartz, 1997), (Dixit and Pindyck, 1994). The 
solution of the equation (15) is given by the exact discrete-time equation for Pt:

 
       

2
2

1exp ln ln 1 (0,1) 1 / 2
2

k t k t k t
t tP P e P e N e k

k
      



           
   

 (16)

In order to estimate the parameters of the mean reversion process, we run the following 
regression:

 1 0 1t tdP P       (17)

where β0 = kP–dt and β1 = –kdt. Hence, if we regress observation dP against P, we can obtain 
estimates of β0 and β1; σ is the standard deviation from the regression. Figure 3 presents a sample 
path of the lead price simulated using the equation (16). 

Fig. 3. One simulated lead price path on a yearly time resolution
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Accordingly, the second major component of the holding cost function is the cost of capital 
tied up which is also modeled as dynamic stochastic process because the ore value (OV) directly 
depends on the metal price (see equations (10), (9)). The relation between risk variables affecting 
the ore value over the project time is described as follows:

  
2

1

( )      for 
( ) ( ) ;     ( )

( )   for 

con mr
Pb Pb Pbcon coni i

i i con mrcon
i Zn Zn Zni

P t m m PbG M
OV t V t V t

P t m m Znm

      
 

  (18)
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Parameters Gi, Mi and Pi (t) have its own stochastic law of performance. By simulating them, 
we obtain ore value for every year of the project. For each simulation, the input values and the 
OV result represent one possible path of the ore value. Simulated values of the OV are obtained 
by performing the following calculations:

  , , , , , ,    1, 2,..., ;   1, 2,..., ;   1,2s s s s con mr
i t i i i iOV OV P G M m m s S t N i     (19)

where S denotes the number of simulations and N number of project years. The main objec-
tive of using simulation is to determine the distribution of the OV for every year of the project. 
In this way we obtain the sequence of probability density functions of OV; OVt ~ (pdft,ηt, σt), 
t = 1,2,...,N, where N is a total project time. Sequence of obtained pdft of OVt can be transformed 
into a sequence of triangular fuzzy numbers of OVt; OVt ~ TFNt, t = 1,2,...,N, i.e, OV1 ~ pdf1 → 
OV1 ~ TFN1; OV2 ~ pdf2 → OV2 ~ TFN2; ... ; OVN ~ pdfN → OVN ~ TFNN. The way of transfor-
mation is based on the following facts: the support of the membership function and the pdf are 
the same, and the point with higher probability (likelihood) has the higher possibility (see Figure 
4). For more details see (Swishchuk, 2008). The uncertainty in the OV parameter is modeled 
by triangular fuzzy number with the membership function which has the support of ηt − 2σt < 
OVt < ηt + 2σt, t = 1,2, ...,N, set up for around 95% confidence interval of distribution function. 
If we take into consideration that the triangular fuzzy number is defined as a triplet (at, bt, ct), 
then at and ct are lower bound and upper bound obtained from lower and upper bound of 5% of 
the distribution, and the most promising value bt is equal to mean value of the distribution. For 
more details see (Do et al., 2005). 

Fig. 4. The way of transformation over time

According to above way of transformation and equation (5), average value of the cost of 
capital tied up over the project time is defined as follows:

 

 1 1
, ,N N

t t t tt t
tup

OV a b c
C

N N
     
 

    (20)
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The market uncertainties related to metal concentrate demand (zi) is expressed by fuzzy 
triangular number. If we take into consideration that the grade of the ore mined (Gi) and mill 
recovery rate (Mi) are defined by normal and uniform stochastic law respectively, then the ore 
demand rate (z) can be defined by following hybrid model:

  , , , ,    1, 2,..., ;   1 2s s s con
i i i iz z z G M m s S i ,    (21)

Since we use fuzzy number to describe vagueness of metal concentrate demand, then after 
calculations (see equation (11)) we obtain a sample of the random variable of the fuzzy num-
ber ( z~i

s, s = 1,2, ...,S, i = 1,2). By applying equation (5), the average fuzzy number is obtained 

(
1 1

/ ;  /S Ss s
Pb Pb Zn Zns s

z z S z z S
 

      ). According to equation (11), the ore demand rate is 

defined as follows:

  max ,Pb Znz z z    (22)

Finally, the total cost function in fuzzy environment can be represented as follows:

 

     

     
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1 2 3 1 2 3
1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3
1 2 3 1 2 3

1
, ,

2
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, , , , , ,

, , , ,

, ,
, , , ,

2

tup

tup tup tup

z q xC x z T a z K b C T
x q

z z z q q q
a a a z z z T K K K T

x x x q q q

x x x
b b b C C C T

  
          

  
           
 

   
 

    
 

 (23)

Using the fuzzy arithmetical operations we obtain the total cost function:

    1 2 3, , , ,C x z T C T C T C T       (24)

where

 

   1 1 11 1 1
1 1 1

3 3

1
2
tupb C xK z q

C a z
q x


    (25)

 

   2 2 22 2 2
2 2 2

2 2

1
2
tupb C xK z q

C a z
q x


    (26)

 

   3 3 33 3 3
3 3 3

1 1

1
2
tupb C xK z q

C a z
q x


    (27)

By equation 7, we defuzzify the total cost function and obtain planning model as follows: 
Minimize

 
   1 2 3

1, ,
3

C x z T C C C T      (28)

subject to 0 < x1 ≤ x2 ≤ x3.
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In order to find the minimization of C(x,z,T) we applied Extension of the Lagrangian 
Method, for more details see (Ritha et al., 2011). The derivatives of C(x,z,T) with respect to x1, 
x2, and x3 are:

 

   1 1 3 3 3
2

1 1 1

1, ,
3 2

tupb C K z qC x z T T
x q x

   
   

   
 (29)

 

   2 2 2 2 2
2

2 2 2

, , 1
3 2

tupb CC x z T K z qT
x q x

  
   

   
 (30)

 

   3 3 1 1 1
2

3 3 3

, , 1
3 2

tupb CC x z T K z qT
x q x

  
   

   
 (31)

Now, let all the above partial derivatives equal to zero, and solve x1, x2, and x3; then we get:

 

  3 3 3
1

1 1 1 1

, , 2 ( 1)
0      

( )tup

C x z T K z q
x

x q b C
 

  
 

 (32)

 

  2 2 2
2

2 2 2 2

, , 2 ( 1)
0      

( )tup

C x z T K z qx
x q b C

 
  

 
 (33)

 

  1 1 1
3

3 3 3 3

, , 2 ( 1)
0      

( )tup

C x z T K z qx
x q b C

 
  

 
 (34)

Equations (32)-(34) show that x1 > x2 > x3; it means that constraint 0 < x1 ≤ x2 ≤ x3 is not 
satisfied. According to Extension of the Lagrangian Method we convert the first inequality con-
straint into equality constraint x2 − x1 = 0 and minimize C(x,z,T) subject to x2 − x1 = 0. Lagrangian 
function is L1(x1,x2,x3,λ1) = C(x, z,T) − λ1(x2 − x1). Let all the partial derivatives equal to zero 
and solve x1, x2, and x3; then we get: 

 

2 2 1 2 3 3 2 3
1 2

1 2 1 1 2 2

2 ( 1) 2 ( 1)
( )tup tup

K z q q K z q q
x x

q q b C b C
  

 
  

 (35)

 

1 1 1
3

3 3 3

2 ( 1)
( )tup

K z qx
q b C





 (36)

Because the above equations (35), (36) show that x1 > x3, it means that constraint 0 < x1 ≤ x2 
≤ x3 is not satisfied, therefore it is not a local optimum and it is necessary to convert the second 
inequality constraint into equality constraint x3 − x2 = 0 and minimize C(x, z,T) subject to x2 − x1 
= 0, x3 − x2 = 0. Lagrangian function is L2(x1,x2,x3,λ1,λ2) = C(x, z, T) − λ1(x2 − x1) − λ2(x3 − x2). 
Let all the partial derivatives equal to zero and solve x1, x2, and x3; then we get: 

  
1 1 1 2 1 2 2 1 3 2 3 3 2 3 3

1 2 3
1 2 3 1 1 2 2 3 3

2 ( 1) 2 ( 1) 2 ( 1)

tup tup tup

K z q q q K z q q q K z q q q
x x x

q q q b C b C b C
    

  
    

 (37)
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Since the equation (37) shows that all inequality constraints are satisfied, the procedure 
terminates with x~ = (x1,x2,x3) as a local optimum solution to the problem i.e., the optimal ore 
inventory level. 

Underground mining of lead-zinc ore can be organized according to the following parameters: 
Number of production cycles per year is calculated as follows:

 
 

2
* * * *( ) ( 1)

1    must be integer
2

tupb C zT q
n n n n

Kq
       

  
 

 
 (38)

The optimal cycle time is given by equation:

 
*

*
Tt
n

  (39)

The optimal production time, when ore is mined in production part of a cycle, is calculated 
as follows:

 
 * * * *

( 1)p p p p
xt t t t

z q
  




 


 (40)

The projected time to inventory depletion without replenishment is calculated as follows:

 
 * * * *

d d d d
xt t t t
z

  


 


 (41)

The optimal ore quantity produced per one cycle is equal to:

 
 * * * *

1
xqy y y y

q
  


 

 


 (42)

The optimal ore quantity produced per one year is equal to:

 
 * * * * *

1
xqY n Y Y Y

q
   


  


 (43)

4. Numerical example

The management of the small Serbian underground mine company was faced with the prob-
lem of long-term supplying of mineral processing plant by lead-zinc ore. Previous ore production 
planning was burdened by many difficulties, primarily related to enabling continuous way of 
“feeding” of mineral processing plant. In the presence of input parameter uncertainties, it looked 
as the problem couldn’t be solved satisfactory. 

For this problem, the input parameters that are required for the production planning are 
given in the Table 2. 
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TABLE 2

Input parameters

Lead metal concentrate demand (t/day) (14  15  17)
Zinc metal concentrate demand (t/day) (29  30  32)

Coeffi cient enables p > z, (q > 1) (1.10  1.15  1.20)
Grade of the ore mined

Lead-Normal distribution (%) min 3.24; medium 3.71; max 4.18; volatility 0.1567
Zinc-Normal distribution (%) min 4.45; medium 5.07; max 5.68; volatility 0.2050

Metal content of the concentrate (%)
Lead 70
Zinc 50

Metal recovery rate (%)
Lead 95
Zinc 42

Mill recovery rate (%)

Lead-Uniform distribution min 86.20; medium 88.20; max 90.20; 
volatility 1.154

Zinc-Uniform distribution min 70.40; medium 72.40; max 74.40;
volatility 1.154

Metal price-mean reversion process ($/t)

Lead (yearly time resolution)-equation (16) spot value 3000 ; equilibrium 2253; speed of mean 
reversion 0.245637; price volatility rate 0.035752

Zinc (yearly time resolution)-equation (16) spot value 2470; equilibrium 1875; speed of mean 
reversion 0.203958; price volatility rate 0.029147

Unit cost of carrying inventory in stock ($/tday) (0.01  0.02  0.04)
Percentage of the capital tied up (%) (3  5  7)

Unit cost of production ($/t) (28  30  34)
Costs of setting up a production cycle ($/cycle) (10  11  13)

Time horizon (day) 365
Total project time (year) 10

In this model, the ore value over the project time is simulated using the mean reversion 
process, normal and uniform probability density functions. The ore demand rate is simulated 
using normal and uniform probability density functions and fuzzy number. The act of simulation 
is repeated 500 times and set of 500 possible states of nature is obtained. The expected values of 
simulated input parameters are calculated from the simulation results. Accordingly, the obtained 
values are as represented in Table 3.
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TABLE 3

Simulation of input parameters

S Gi
RAND

Mi
RAND

Project time (year)
0 1 2 3 4 5 6 7 8 9 10

1

Pb 0.0355 0.8727 PPb $/t 3000 2690 2743 2498 2485 2463 2332 2307 2290 2240 2368
Zn 0.0516 0.7215 PZn $/t 2470 2427 2294 2205 2276 2266 2248 2227 2128 2043 1993

OVPb $/t 88.41 79.29 80.84 73.64 73.24 72.60 68.75 67.99 67.50 66.03 69.79
zPb 316 338 384 t/day OVZn $/t 14.73 14.47 13.68 13.15 13.58 13.51 13.41 13.28 12.69 12.18 11.89
zZn 203 210 224 t/day OV $/t 103.14 93.76 94.52 86.79 86.82 86.11 82.16 81.27 80.19 78.21 81.68

























500

Pb 0.0355 0.8727 PPb $/t 3000 2690 2743 2498 2485 2463 2332 2307 2290 2240 2368
Zn 0.0516 0.7215 PZn $/t 2470 2427 2294 2205 2276 2266 2248 2227 2128 2043 1993

OVPb $/t 88.41 79.29 80.84 73.64 73.24 72.60 68.75 67.99 67.50 66.03 69.79
zPb 316 338 384 t/day OVZn $/t 14.73 14.47 13.68 13.15 13.58 13.51 13.41 13.28 12.69 12.18 11.89
zZn 203 210 224 t/day OV $/t 103.14 93.76 94.52 86.79 86.82 86.11 82.16 81.27 80.19 78.21 81.68

*E
zPb 300 322 365 t/day
zZn 207 214 229 t/day

max 300 322 365 t/day OV $/t 107.85 101.35 96.60 93.03 90.57 88.43 86.68 85.30 84.36 83.54 83.01
σt 4.059 4.745 4.892 4.882 5.015 5.061 5.005 4.857 4.890 4.882 4.653

*E – expected value

Transformation of obtained pdft sequence of OVt into a sequence of TFNt of OVt is represented 
in Table 4. Transformation of pdft, t = 1 of OVt into a TFNt of OVt is represented in Figure 5 and 6.

TABLE 4

Transformation of simulated OVt values into TFNt values

Project time (year)
0 1 2 3 4 5 6 7 8 9 10

OV $/t 107.85 101.35 96.60 93.03 90.57 88.43 86.68 85.30 84.36 83.54 83.01
σt 4.059 4.745 4.892 4.882 5.015 5.061 5.005 4.857 4.890 4.882 4.653

*TFNt

99.73
107.85
115.97

91.86
101.35
110.84

86.82
96.60
106.38

80.81
93.03
102.79

80.54
90.57
100.60

78.31
88.43
98.55

76.67
86.68
96.69

75.59
85.30
95.01

74.58
84.36
94.14

73.78
83.54
93.30

73.70
83.01
92.32

*TFNt – (99.73  107.85  115.97) 

Average value of the cost of capital tied up over the project time is:

     
0.03  0.05  0.07

79.25  89.29  99.06 0.00651  0.01223  0.01899   
365tupC    $/tday

Algebraically, we obtain the total fuzzy cost function:

1 3 2

2 3 1

0.008265 250 / 8400,  0.016123
365

462 / 9660,  0.0295 863 / 12410
x x x

C
x x x

   
     


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Using equation 7, we defuzzify the total cost function and obtain planning model as follows: 

1 3 2 2 3 1min 30417 / 1.96 56210 / 3.58 104965 / 3707183C x x x x x x      

subject to 0 < x1 ≤ x2 ≤ x3.

Results of Lagrangian Method application are represented in Table 5.

TABLE 5

Results of Langrangian method

Iteration Ore inventory level (t/day) Constraint

1.
x1 = 323
x2 = 169
x3 = 92

Not satisfi ed

2.
x1 = 233
x2 = 233
x3 = 92

Not satisfi ed

3.
x1 = 135
x2 = 135
x3 = 135

Satisfi ed

Parameters of optimal production planning are represented in Table 6.

TABLE 6

Production planning parameters

Parameter Value
1 2

Ore inventory level 135 t/day
Number of production cycles per year 100 cycle

Cycle time 3.65 day
Production time per cycle 3 day/cycle

Ore inventory depletion time per cycle 0.65 day/cycle
Ore quantity produced per cycle 1131 t/cycle

Working days per year 300 day/year

Fig. 6. Triangular fuzzy number of OVt, t = 1Fig. 5. Probability density function of OVt, t = 1

85 90 95 100 105 110 115

Ore value t=1

0

0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9

1

85 90 95 100 105 110 115

Ore value t=1
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1 2
Non-working days per year 65 day/year

Annual production 113100 t/year
Daily production 377 t/day

Cost function 3709488 $

From Table 6, we can see that the company has 300 days per year to mine the ore and 65 
days for planned and unplanned production interruptions, i.e. for production system maintenance. 
Every day 377 tonnes must be mined; ore inventory level is 135 t/day.

5. Sensitivity analysis

The sensitivity analysis of the developed model is performed by changing the values of the 
following fuzzy parameters z, K, a, b, φ by –30%, –20%, –10%, +10%, +20% and +30 %, taking 
one parameter at a time and keeping the remaining parameters unchanged. According to q > 1, 
value of the fuzzy parameter q is changed by +10%, +20% and +30 %. We refer to the data used 
in the above example as the basic data set and study sensitivity of the optimal solution to changes 
in the values of the different input parameters. The changes in the optimal decision values of x, 
n*, t*, Y* and C are represented in Table 7.

TABLE 7

Sensitivity analysis

Parameter % Change % Change
in x

% Change
in n*

% Change
in t*

% Change
in Y*

% Change
in C

1 2 3 4 5 6 7

z~

–30 –16.4462 –16.0000 16.0000 –16.3353 –29.9915
–20 –10.6772 –11.0000 11.0000 –10.5587 –19.9941
–10 –5.25885 –5.0000 5.0000 –5.13319 –9.99697
+10 4.740286 5.0000 –5.0000 4.879199 9.996822
+20 9.397661 9.0000 –9.0000 9.542751 19.99351
+30 13.8647 14.0000 –14.0000 14.01571 29.99007

K
~

–30 –16.4462 19.0000 –19.0000 –16.3353 –0.01015
–20 –10.6772 12.0000 –12.0000 –10.5587 –0.00656
–10 –5.25885 5.0000 –5.0000 –5.13319 –0.00319
+10 4.740286 –5.0000 5.0000 4.879199 0.003035
+20 9.397661 –9.0000 9.0000 9.542751 0.005933
+30 13.8647 –12.0000 12.0000 14.01571 0.008712

a~

–30 0.0000 0.0000 0.0000 0.0000 –29.9814
–20 0.0000 0.0000 0.0000 0.0000 –19.9876
–10 0.0000 0.0000 0.0000 0.0000 –9.99378
+10 0.0000 0.0000 0.0000 0.0000 9.99379
+20 0.0000 0.0000 0.0000 0.0000 19.98758
+30 0.0000 0.0000 0.0000 0.0000 29.98136



90

1 2 3 4 5 6 7

b
~

–30 10.00237 –10.0000 10.0000 10.14826 –0.00622
–20 6.233307 –7.0000 7.0000 6.3742 –0.00407
–10 2.877447 –3.0000 3.0000 3.01389 –0.00199
+10 –2.85505 3.0000 –3.0000 –2.72622 0.001932
+20 –5.32836 6.0000 –6.0000 –5.2028 0.0038
+30 –7.58848 9.0000 –9.0000 –7.46592 0.005611

q~

– – – – – –
– – – – – –
– – – – – –

+10 24.4375 25.0000 –25.0000 –26.523 0.015859
+20 44.34804 42.0000 –42.0000 –36.0681 0.026561
+30 62.00219 55.0000 –55.0000 –40.6886 0.03437

φ~

–30 4.905222 –6.0000 6.0000 5.044354 –0.00327
–20 3.127228 –4.0000 4.0000 3.264001 –0.00215
–10 1.450479 –2.0000 2.0000 1.585028 –0.00107
+10 –1.63432 2.0000 –2.0000 –1.50386 0.001051
+20 –3.05734 3.0000 –3.0000 –2.92877 0.00208
+30 –4.40936 5.0000 –5.0000 –4.28258 0.003092

Here we have assumed the following sensitivity intervals (SI); SI = max – min:
– SI ≤ 10 imply insensitivity,
– 10 < SI ≤ 20 imply slight sensitivity,
– 20 < SI ≤ 30 imply moderate sensitivity
– 30 < SI ≤ 40 imply high sensitivity,
– 40 < SI imply very high sensitivity.

A careful analysis of Table 7 reveals the following points, see Table 8:

TABLE 8

Sensitivity between input and output parameters

Parameter x n* t* Y* C

z~ high sensitivity moderate 
sensitivity

moderate 
sensitivity high sensitivity very high 

sensitivity

K
~ high sensitivity high sensitivity high sensitivity high sensitivity insensitivity

a~ insensitivity insensitivity insensitivity insensitivity very high 
sensitivity

b
~

slight sensitivity slight sensitivity slight sensitivity slight sensitivity insensitivity

q~ high sensitivity moderately 
sensitivity

moderately 
sensitivity high sensitivity insensitivity

φ~ insensitivity slight sensitivity slight sensitivity insensitivity insensitivity
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5. Conclusion

This paper offers a framework in which an underground lead-zinc mine production can 
be planned by implementing the inventory management based on the uncertainty of input data. 
Paying attention to the complexity and dynamic nature of the problem, it is necessary to consider 
factors generating uncertainty in the ore production planning. Therefore, we applied the fuzzy 
stochastic concept to identify the level of uncertainty in the process of planning. Inventory theory 
is used for obtaining optimal parameters of the ore production in order to avoid the negative 
influence of the production interruption and satisfy the market demands in continuous way. The 
developed model is very flexible and can be implemented in all mining companies because of 
its adjustment to the specific conditions prevailing in each mine in particular. The model is not 
closed, and can be extended by some constraints related to specific characteristics of production, 
the limitation on the available ore storage space, the limit of the total investment to increase the 
ore storage capacity, etc. In the future research, we plan to examine the problem of changes in 
demands over the project time, and find the optimal production parameters for every year of the 
project in particular. 
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