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Analytical solutions of heat transfer for laminar flow

in rectangular channels

WITOLD RYBIŃSKI1

JAROSŁAW MIKIELEWICZ

The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences,
Fiszera 14, 80-231 Gdańsk, Poland

Abstract The paper presents two analytical solutions namely for Fan-
ning friction factor and for Nusselt number of fully developed laminar fluid
flow in straight mini channels with rectangular cross-section. This type of
channels is common in mini- and microchannel heat exchangers. Analytical
formulae, both for velocity and temperature profiles, were obtained in the
explicit form of two terms. The first term is an asymptotic solution of lam-
inar flow between parallel plates. The second one is a rapidly convergent
series. This series becomes zero as the cross-section aspect ratio goes to
infinity. This clear mathematical form is also inherited by the formulae for
friction factor and Nusselt number. As the boundary conditions for veloc-
ity and temperature profiles no-slip and peripherally constant temperature
with axially constant heat flux were assumed (H1 type). The velocity profile
is assumed to be independent of the temperature profile. The assumption of
constant temperature at the channel’s perimeter is related to the asymptotic
case of channel’s wall thermal resistance: infinite in the axial direction and
zero in the peripheral one. It represents typical conditions in a minichannel
heat exchanger made of metal.
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Nomenclature

A – heat exchange area, m2

a, b – sides of the rectangular cross-section, m
cp – specific heat at constant pressure, J/(kgK)
dh – hydraulic and thermal diameter, m
F – force, N
f – Fanning friction factor
G – mass flux (mass velocity), kg/(m2s)
K – cross-section aspect ratio
k – overall heat transfer coefficient, W/(m2K)
L – channel’s length, m
ṁ – mass flow rate, kg/s
n – outer normal direction to the channel wall, m
Nu – Nusselt number
p – fluid pressure along the channel, p(z), Pa

Q̇ – heat flow rate, W
q̇ – heat flux, W/m2

Re – Reynolds number
S – cross-section area, m2

T – temperature profile, T (x, y), K
t, u – coefficients
v – velocity profile, v(x, y), m/s
W – perimeter length, m
x, y, z – coordinates, m

Greek symbols

α – heat transfer coefficient, W/(m2K)
λ – thermal conductivity, W/(mK)
µ – dynamic viscosity, kg/(ms)
ρ – density, kg/m3

τs – shear stress, Pa
∆T – logarithmic mean temperature difference, K

Subscripts

c, h – cold and hot fluid
circle, square, plates – cross-section types
n – n-th term in a series (n = 1, ...,∞)
w – channel’s wall
− – mean value over the cross-section or perimeter

1 Introduction

Minichannel heat exchangers with laminar fluid flows are suitable for small
scale organic Rankine cycle (ORC) and other applications like electronic
equipment. One of the task which may help the design of minichannel heat
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exchangers is to find the analytical form of laminar fluid flow velocity and
temperature profiles in a rectangular minichannel, Fanning friction factor
and Nusselt number. It can be further applied in an analytical model of
heat transfer in minichannel heat exchanger. Rectangular cross-section of
minichannels is typical in this type of heat exchangers. The analytical so-
lutions also help in testing numerical algorithms as the reference solutions.
Both analytical and approximate formulae for velocity and temperature
profiles, Fanning friction factor and Nusselt number exist in the literature
(for example in [1]). However, these analytical solutions consist of double
series or single series of not very fast convergence.

In the paper the analytical formulae for these quantities are presented.
The solutions consist of two parts: the asymptotic solution of laminar flow
between parallel plates and the rapidly convergent single series. This series
becomes zero as the cross-section aspect ration goes to infinity. The numer-
ical results are compared with the results of the utilized existing formulae.

The main goal in this paper is to obtain the fast convergent formula
for Nusselt number. However, since it needs derivation of the fluid velocity
profile, the formula for Fanning friction factor is also derived.

2 General information about minichannel heat

exchanger

A minichannel heat exchanger consists of many double layers of rectangular
channels in which hot and cold fluids flow. Schematic view of the minichan-
nel heat exchanger and channel’s geometry is shown in Fig. 1. The channel’s
cross-section is described by x and y coordinates (Fig. 2). The z coordinate
is an axis of the channel.

Total heat flow rate in the minichannel heat exchanger is given by the
general formula

Q̇ = kA∆T . (1)

If thermal resistance of channel walls is negligible, overall heat transfer
coefficient is given by

1

k
=

1

αh
+

1

αc
. (2)

Heat transfer coefficient α of the fluid flow can be calculated from the defi-
nition of the Nusselt number

Nu =
αdh
λ

. (3)
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Figure 1: Schematic view of a minichannel
heat exchanger.

Figure 2: Coordinates of the channel’s
cross-section.

In order to derive the formula for Nusselt number, it is necessary to derive
the formula for velocity profile of the laminar fluid flow first. This also gives
a possibility to calculate Fanning friction factor and pressure drop along the
channel.

Channel’s geometry is described by its cross-section aspect ratio

K =
a

b
. (4)

For square cross-section K = 1, whereas for infinite wide plates K → ∞.
It is assumed that hydraulic and thermal equivalent channel diameters

are the same and are given by

dh =
4S

W
= 2

K

K + 1
b , (5)

where

S = ab, W = 2(a+ b) . (6)

There are two extreme cases of the equivalent diameter (for square duct
and for infinite wide plates):

dh.square = b ; dh.plates = 2b . (7)
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3 Derivation of the velocity profile and Fanning

friction factor

Figure 3: Momentum balance in the fluid element.

Two forces act on the fluid element (Fig. 3):

dF1 = −S
dp

dz
dz , dF2 = −τ̄sdA , (8)

where mean wall shear stress, τ̄s, and the wall surface element, dA, are given
by

τ̄s =
1

W

∫

W

τsdW , dA = Wdz . (9)

The sum of dF1 and dF2 is equal zero for a steady state flow:

dF1 + dF2 = 0 . (10)

Use of (9), (11) and the definition of dh (6) gives

τ̄s = −
dh
4

dp

dz
. (11)

Fanning friction factor, f , is defined by the formula for mean wall shear
stress

τ̄s = f
ρv̄2

2
, (12)

where the mean flow velocity is defined by

v̄ =
1

S

∫

S

vdS . (13)
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Combination of (12) and (13) gives

f = −
1

ρv̄2
dh
2

dp

dz
. (14)

Use of Reynolds number

Re =
Gdh
µ

where G =
ṁ

S
= ρv̄ , (15)

gives the formula for the Fanning friction factor

f = −
1

Rev̄

d2h
2

1

µ

dp

dz
. (16)

The above general derivation independent of the cross-section shape is based
on the same momentum balance as described in [2] where circular ducts are
considered.

Calculation of f demands the knowledge of fluid flow mean velocity, v̄.
For fully developed steady state incompressible laminar flow, the velocity
profile, v(x, y), is a solution of the Poisson equation

∂2v

∂x2
+

∂2v

∂y2
=

1

µ

dp

dz
, (17)

with the Dirichlet boundary condition

v|w = 0 . (18)

Equation (17) was derived from Navier-Stokes equation under the assump-
tion of constant physical fluid properties. This means velocity profile is
independent of the temperature one. The solution of this nonuniform linear
partial differential equation is a sum of two terms:

• particular solution of Poisson equation (in the form of simple expres-
sion) with the boundary condition for parallel plates,

• general solution of Laplace equation (in the form of cosine Fourier
series) with the boundary condition equal to the difference between
the condition (18) and the condition of the first term.

Velocity profile, v(x, y), is then given by

v(x, y) =
1

µ

dp

dz

[

1

2

(

y2 −
b2

4

)

− 4b2
∞
∑

n=1

(−1)n

u3n

cosh
(

unK
x
a

)

cosh
(

unK
1
2

) cos
(

un
y

b

)

]

,

(19)
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where
un = (2n − 1)π . (20)

The Fourier series in (19) is convergent since the first term (−1)n/u3n is
absolute convergent, the second one is bounded and less or equal to 1 for
−a/2 ≤ x ≤ a/2, the third (cosine) term is always bounded.

Mean velocity is calculated by double integration

v̄ =
1

ab

a/2
∫

−a/2

b/2
∫

−b/2

v(x, y)dxdy , (21)

which gives the result

v̄ = −
1

µ

dp

dz

d2h
48

(

K + 1

K

)2
[

1−
192

K

∞
∑

n=1

1

u5n
tanh

(

unK
1

2

)

]

. (22)

Combination of (16) and (22) gives the final formula for the Fanning friction
factor

f =
24

Re

(

K
K+1

)2

1− 192
K

∞
∑

n=1

1
u5
n
tanh

(

unK
1
2

)

. (23)

The series appearing in (23) is rapidly convergent. In practice, for 1 ≤ K ≤
20 achievement of the relative accuracy 10−6 demands use of maximum 9
first values.

4 Derivation of the temperature profile and

Nusselt number

It is assumed that wall temperature Tw = const at the perimeter. Heat
flow dQ leaving a fluid element (Fig. 4) is equal to

dQ̇ = ṁcpT̄ − ṁcp(T̄ + dT̄ ) = −ṁcp
dT̄

dz
dz , (24)

where the mean fluid temperature is given by

T̄ =
1

Sv̄

∫

S

vTdS . (25)
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Figure 4: Energy flow balance in the fluid element.

Heat transfer coefficient, α, is defined by Newton’s law of cooling

dQ̇ = α(T̄ − Tw)dA = α(T̄ − Tw)Wdz . (26)

Combination of (24) and (26) gives

−ṁcp
dT̄

dz
= α(T̄ − Tw)W . (27)

Use of the definition of dh (6) and the equation for mass flow rate

ṁ = ρv̄S , (28)

gives

α = −ρcp
dT̄

dz

dh
4

v̄

T̄ − Tw
. (29)

Combination of (6) and (29) gives the formula for Nusselt number

Nu = −
ρcp
λ

dT̄

dz

d2h
4

v̄

T̄ − Tw
. (30)

The above general derivation, independent of the cross-section shape, is
based on the same energy balance as described in [2] where circular ducts
are considered.

Calculation of Nu number demands knowledge of fluid flow mean tem-
perature, T̄ , (25). For fully developed steady state incompressible laminar
flow, without internal heat sources and energy dissipation, the temperature
profile, T (x, y), is a solution of the Poisson equation

∂2T

∂x2
+

∂2T

∂y2
=

ρcp
λ

dT̄

dz
v , (31)
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with the Dirichlet boundary condition

T |w = Tw = const . (32)

Equation (31) was derived from Fourier-Kirchhoff equation under assump-
tion of constant axial wall heat flux, q̇w, (along z axis) with uniform periph-
eral wall temperature Tw. This means wall thermal resistance is infinite in
the axial direction and zero in the peripheral direction. This type of con-
dition is known in the literature as H1 type, according to [1]. Constant
physical fluid properties are also assumed as well as the lack of fluid axial
heat conduction.

The solution of Eq. (31) was obtained by use of the finite Fourier trans-
form with the same orthogonal set of functions as in the solution for velocity
profile (19). This way, the temperature profile is a sum of two terms (simple
expression and cosine Fourier series):

T (x, y) = Tw +
ρcp
λ

dT̄

dz

1

µ

dp

dz

{

1

8

(

y4

3
−

b2y2

2
+

5b4

48

)

+

+2b4
∞
∑

n=1

(−1)n

u5n

[

2 + unK
1

2
tanh

(

unK
1

2

)

− unK
x

a
tanh

(

unK
x

a

)

]

×

×
cosh

(

unK
x
a

)

cosh
(

unK
1
2

) cos
(

un
y

b

)

}

. (33)

The series in (33) is convergent for the same reason as the series in (19). The
absolute value of the term with hyperbolic tangent increases approximately
linearly for −a/2 ≤x≤a/2 as n increases while the first term is inversely
proportional to the 5th power of n.

Mean temperature is calculated by double integration

T̄ =
1

abv̄

a/2
∫

−a/2

b/2
∫

−b/2

v(x, y)T (x, y)dxdy , (34)

which gives

T̄ = Tw +
ρcp
λ

dT̄

dz

1

µ

dp

dz

17d4h
26880

(

K + 1

K

)4

×

×

1− 40320
17K

∞
∑

n=1

1
u9
n

[

15 tanh(tn)−
7tn+2t2n tanh(tn)

cosh2(tn)

]

1− 192
K

∞
∑

n=1

1
u5
n
tanh(tn)

, (35)
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where

tn = unK
1

2
. (36)

Combination of (22), (30), (35) gives the final formula for Nusselt number

Nu =
140

17

(

K

K + 1

)2

[

1− 192
K

∞
∑

n=1

1
u5
n
tanh(tn)

]2

1− 40320
17K

∞
∑

n=1

1
u9
n

[

15 tanh(tn)−
7tn+2t2n tanh(tn)

cosh2(tn)

]

.

(37)
The solution for Nusselt number of fully developed laminar flow depends
only on the wall heat transfer boundary condition (here H1) and the channel
geometry represented by K [3]. Both series in (37) are rapidly convergent.
In practice, for 1 ≤ K ≤ 20 achievement of the relative accuracy 10−6

demands use of maximum 9 and 3, respectively, first values of the series in
the numerator and the denominator.

5 Comparison of the results

Calculation results both of Fanning friction factor (23) and Nusselt number
(37) were compared to the results of the approximate formulae from [1] (also
discussed in [3–5]). The calculation using the derived exact formulae was
performed by the computer program written in Object Pascal (Delphi 7 En-
vironment).This program was used to calculate f , Nu, temperature profiles
and heat transfer in minichannel heat exchangers.

The approximate formula for Fanning friction factor has the form [1]

fRe = 24
(

1− 1.3553K−1+

+1.9467K−2 − 1.7012K−3 + 0.9564K−4 − 0.2537K−5
)

. (38)

The results of numerical calculation of f using (23), (38) are shown in
Tab. 1. For comparison with circular channels, the value of the aspect ratio
for fRe = 16 is also calculated. Figure 5 shows the impact of the aspect
ratio on the Fanning friction factor.

Use of the value for circular cross-section instead of the actual values
would create inaccuracies:

fcircle
fsquare

=
16

14.23
= 1.12 ,

fcircle
fplates

=
16

24
= 0.67 . (39)
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Table 1: Comparison of the exact and approximate values of Fanning friction factor.

K = a/b f Re f Re [1]

[−] [−] [−]

1 14.23 14.23

2 15.55 15.56

2.269327 16.00 16.01

3 17.09 17.09

4 18.23 18.23

5 19.07 19.07

10 21.17 21.18

→ ∞ 24.00 24.00

Figure 5: The impact of the cross-section aspect ratio on Fanning friction factor.

The value of f would be overestimated by 12% and underestimated by 33%
respectively.

The approximate formula for Nusselt number [1] has the form

Nu = 8.235
(

1− 2.0421K−1+

+3.0853K−2 − 2.4765K−3 + 1.0578K−4 − 0.1861K−5
)

. (40)

The results of numerical calculation of Nu using (37), (40) are shown in
Tab. 2. For comparison with circular channels, the value of aspect ratio for
Nu = 48/11 = 4.363636 is also calculated. Figure 6 shows the impact of
the aspect ratio on the Nusselt number.
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Table 2: Comparison of the exact and approximate calculation of Nusselt number.

K = a/b Nu Nu [1]

[−] [−] [−]

1 3.61 3.61

2 4.12 4.13

2.342318 4.363636 4.37

3 4.79 4.80

4 5.33 5.33

5 5.74 5.74

10 6.78 6.79

→ ∞ 8.24 8.24

Figure 6: The impact of cross-section aspect ratio on Nusselt number.

Use of the value for circular cross-section instead of the actual value
would create inaccuracies:

Nucircle

Nusquare
=

4.364

3.608
= 1.21 ,

Nucircle

Nuplates
=

4.364

8.235
= 0.53 . (41)

The value of Nu would be overestimated by 21% and underestimated by
47% respectively.

An example of temperature profiles simulation generated by this pro-
gram is shown in Fig. 7.
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Figure 7: Simulation of temperature profiles for one pair of hot and cold laminar fluid
flows in the minichannel heat exchanger (aspect ratio K = 2).

6 Conclusions

• The exact analytical formulae in mathematically usable form for Fan-
ning friction factor and Nusselt number were derived.

• The formula for Nusselt number contains single fast convergent infinite
series instead of double series known from the literature.

• The results of obtained exact solutions and widely used approximate
formulae in the literature are in very good agreement. This enables a
possible use of the exact formulae instead of the approximate ones.

• Analytical form of velocity and temperature profiles allows their fur-
ther adaptation to create the complete analytical model of heat trans-
fer in minichannel heat exchangers.
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