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Abstract An evaluation method is developed for single blow experi-
ments with liquids on heat exchangers. The method is based on the unity
Mach number dispersion model. The evaluation of one experiment yields
merely one equation for the two unknowns, the number of transfer units
and the dispersive Peclet number. Calculations on an example confirm that
one single blow test alone cannot provide reliable values of the unknowns.
A second test with a liquid of differing heat capacity is required, or a tracer
experiment for the measurement of the Peclet number. A modified method
is developed for gases. One experiment yields the effective number of trans-
fer units and approximate values of the two unknowns. The numerical
evaluation of calculated experiments demonstrates the applicability of the
evaluation methods.
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Nomenclature

A – area, m2

a – exponent
B – capacity ratio, B = V ρcp/Vwρwcw = C/Cw

C – capacity, J/K
C – propagation velocity of thermal disturbances, m/s
c – specific heat capacity, J/(kg K)
F – transfer function
i – counter
k – counter
L – length of flow path, m
M – dispersive thermal Mach number, M = w/C

N – number of transfer units, N = αA
/

Ẇ

Nd – effective number of transfer units according to Eq. (1)
Nd,33 – effective number of transfer units according to Eq. (33)
Nd,34 – effective number of transfer units according to Eq. (34)
Nd,36 – effective number of transfer units according to Eq. (36)
Nd,40 – effective number of transfer units according to Eq.(40)
Nu – Nusselt number
m – number of heat transferring surfaces
n – number of completely mixed zones in the cascade model or

number of subsystems in Eqs. (25)–(28)
Pe – dispersive Peclet number, Pe =

wLρcp
λd

= ẆL
Acλd

q̇x – axial dispersive heat flux, W/m2

Re – Reynolds number
s – Laplace variable
T – dimensionless fluid temperature outside the heat exchanger,

T = θ−ϑ0

∆ϑ∗

t – dimensionless fluid temperature inside the heat exchanger, t =
ϑ−ϑ0

∆ϑ∗

V – volume of fluid inside the flow channel, m3

V̇ – volumetric flow rate, m3/s
υi – volume ratio of subsystem i, υi = Vi

/
∑n

i=1 Vi

υ̇i – flow rate ratio of subsystem i, υ̇i = V̇i

/

∑n

i=1 V̇i

Ẇ – heat capacity rate, W/K
w – mean flow velocity, m/s
x – dimensionless flow length, 0 ≤ x ≤ 1
z – dimensionless time coordinate, z = τ/τR

Greek symbols

α – heat transfer coefficient, W/(m2 K)
αd – effective heat transfer coefficient according to Eq. (1), W/(m2 K)
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η – dimensionless dispersive heat flux, η = q̇xL

λd∆ϑ∗

θ – fluid temperature outside the heat exchanger, K
ϑ – fluid temperature inside the heat exchanger, K
∆ϑ∗ – arbitrary temperature difference, K
λ – thermal conductivity, W/(m K)
ρ – density, m3/kg
τ – time coordinate, s

τR – residence time, τR = V
/

V̇ , s

Subscripts

c – cross section
d – dispersive
p – isobaric
p – parabolic
w – wall
0 – inlet
1 – outlet

Superscripts

¯ – Laplace transform

1 Introduction

The single blow experiment is widely used for the determination of heat
transfer coefficients in thermal regenerators and recuperators [1–3]. Various
evaluation methods are known and applied depending on the heat exchanger
model used and the parameters considered. In the following an evaluation
method is developed and discussed which considers the unity Mach num-
ber axial dispersion model which has recently [4] been suggested for the
improvement of the usual simple thermal design calculation methods. In
steady state processes in heat exchangers the model requires merely a sim-
ple correction of the mean temperature difference or preferably a correction
of the mean heat transfer coefficient according to

1

αdA
=

1

αA
+

1

ẆPe
;

1

Nd
=

1

N
+

1

Pe
. (1)

The degree of dispersion is expressed with the dispersive Peclet number.
Pe = ∞ means ideal plug flow. All known correlations and design charts [5]
can further be applied if the corrected heat transfer coefficients are used.
On the contrary, the transient single blow process can generally not be
described with the above corrected heat transfer coefficient alone. This is
shown in the following derivations.
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2 Analysis of single blow experiment with axial
dispersion

According to the hyperbolic dispersion model [4] the energy equation of the
fluid can be expressed in dimensionless form as

∂t

∂z
+
∂t

∂x
+

1

Pe

∂η

∂x
+

m
∑

i=1

Ni (t− twi) = 0 , (2)

η +
M2

Pe

(

∂η

∂z
+
∂η

∂x

)

= − ∂t

∂x
. (3)

An axial dispersion term is incorporated in Eq. (2), which takes the devia-
tions from ideal plug flow into account. Equation (3) describes the disper-
sive heat flux, η, according to the heat conduction law of Chester [4, ref. 12]
which considers finite propagation velocities C of thermal disturbances:
0 ≤ C2 = (w/M)2 ≤ ∞. For infinite velocity C = ∞ the dispersive Mach
number M = 0, and Eq. (3) turns to the Fourier type conduction law, which
is the basis of the former parabolic dispersion model [2,3].

In this paper the new unity Mach number dispersion model [4] is ap-
plied, in which the propagation velocity equals the mean flow velocity and
M2 = 1. As discussed earlier [4], the mean value M = 1 is more appropriate
for simultaneous backmixing and maldistribution than M = 0.

The energy equation of the wall i out of m adjacent walls is

∂twi
∂z

= NiBi (t− twi) . (4)

The number of transfer units, Ni, is formed with the individual heat transfer
coefficient, αi, and heat transfer surface, Ai. The heat transfer coefficient
may vary with x, αi = αi(x). The same applies to the heat capacity ratio,
Bi = Bi(x). In a heat exchanger the rear surface of the separating wall is
considered to be adiabatic (evacuated flow channel).

The walls are thermally thin which mean zero heat conduction resistance
perpendicular to the heat transfer surface and zero conductance parallel to
the surface. For simplification axial wall heat conduction is neglected in
this analysis, however, it is indirectly taken into account with the disper-
sive Peclet number of the fluid. Actual axial wall heat conduction during
operation of the exchanger under steady state conditions as well as dur-
ing the transient single blow experiment can be considered by an effective
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slightly decreased dispersive Peclet number (higher apparent dispersion co-
efficient). The single blow experiment will automatically yield the effective
Peclet number for design calculations.

The dimensionless fluid temperature inside the flow channel (0 ≤ x ≤ 1)
is denoted with t, the fluid temperatures in the nondispersive fore and aft
sections are denoted with T. The energy balances at the inlet and outlet
cross-sections require sudden local changes in temperature [4] according to

x = 0 and x = 1 : T = t+
η

Pe
. (5)

This equation is only valid for M = 1. Before the experiment all dimension-
less temperatures have to be zero.

τ ≤ 0, z ≤ 0 : T = t = tw = 0 . (6)

During the experiment an arbitrarily shaped temperature pulse is generated
at the inlet

τ > 0, z > 0 : T (x = 0) = T0 = f(z) . (7)

The solution of the equation system Eqs. (2)–(5) are obtained using the
Laplace transformation

st̄+
dt̄

dx
+

1

Pe

dη̄

dx
+

m
∑

i=1

Ni (t̄− t̄wi) = 0 , (8)

η̄
(

1 +
s

Pe

)

+
1

Pe

dη̄

dx
= − dt̄

dx
, (9)

st̄wi = NiBi (t̄− t̄wi) , (10)

T̄ = t̄+
η̄

Pe
. (11)

For the consideration of the sudden changes at inlet and outlet, the temper-
ature T according to Eq. (5) is introduced as a variable. This hypothetic
temperature within the dispersive region turns to the true fluid tempera-
ture in the fore and aft sections (x ≤ 0, x > 1). Substitution in Eq. (8) t̄
according to Eq. (11) and t̄wi according to Eq. (10) yields

(

T̄ − η̄

Pe

)

(

s+

m
∑

i=1

1
1
Ni

+ Bi

s

)

= −dT̄

dx
. (12)
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Replacing t̄ in Eq. (9) using Eq. (11) gives

η̄

Pe
= − 1

Pe + s

dT̄

dx
. (13)

Eliminating η̄ by substituting Eq. (13) into Eq. (12), rearranging, separating
of variables and integration leads finally to

a (s) = ln
T̄0
T̄1

=

∫ x=1

x=0

dx
1

s+
∑m

i=1
1

1
Ni

+
Bi
s

+ 1
Pe+s

(14)

with the transfer function F (s)

e−a(s) = F (s) =
T̄1 (s)

T̄0 (s)
=

∫∞
0 T1e

−szdz
∫∞
0 T0e−szdz

. (15)

In Eq. (14) the Peclet number has to be independent of x since Eq. (11) has
been differentiated with Pe = const. The number of transfer units, Ni, and
the heat capacity ratio, Bi, may vary with x. The most general Eq. (14)
could be used for the calculations of the outlet profiles if Bi(x), Ni(x) and
Pe are given or guessed. Comparing measured and calculated outlet profiles
T1(z) could yield the unknown Peclet number and numbers of transfer units
Ni. In this paper another approach is proposed in which the measured data
are evaluated in the frequency domain.

3 Evaluation method

The principle of the method is explained and tested for the simplest case
of one wall (m = 1) and constant values of B, N and Pe. Constant B

and N presumes thermally thin walls in which heat conduction resistances
perpendicular to the surface can be neglected. Then Eq. (14) simplifies to

1

a (s)
=

1

s+ 1
1
N
+B

s

+
1

Pe + s
. (16)

As also previously proposed for the evaluation of tracer experiments [6],
the characteristics of the function a(s) = − lnF (s) at the mean point s = 0
are used for the evaluation of measured temperature profiles. For B > 0
and s = 0 the transfer function F (s = 0) = 1 and a(s = 0) = a0 = 0.
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This result represents the heat balance: Heat input (area under inlet pulse)
equals heat output (area under outlet pulse).

The main information for the determination of N and Pe are obtained
from the derivatives of a(s). Differentiating a(s) of Eq. (16) yields

a′0 =
∂a

∂s

∣

∣

∣

∣

s=0

= 1 +
1

B
, (17)

a′′0 =
∂2a

∂s2

∣

∣

∣

∣

s=0

= − 2

N

1

B2
− 2

Pe

(

1 +
1

B

)2

. (18)

The derivatives of a(s) from Eq. (14) are given in the appendix, Eqs. (A1)
and (A2). The limiting case N = 0 (no heat transfer) and/or B = ∞ (no
wall heat capacity) describes the tracer experiment [6] if T is the tracer
concentration. The Eq. (16) turns to 1/a = 1/s + 1/(Pe + s), Eq. (17) to
a′0 = 1 and Eq. (18) a′′0 = −2/Pe. The Eq. (17) and (18) are also valid
for the parabolic dispersion model (M = 0, Pep) and the cascade model
(n mixed zones) if Pe is replaced according to

Pe = 2n =
Pe2p

Pep − 1 + exp (−Pep)
. (19)

The transfer functions of the two models are given in the appendix,
Eqs. (A3) and (A4). Under steady state conditions in heat exchangers the
relationship Eq. (19) is valid as well, however, exactly only for uniform heat
flux along the heat transfer surface.

3.1 Pulse signals

Solving Eq. (15) for a(s) and differentiating twice with respect to s, yields
for B > 0 finally the experimental derivatives:

a′0 =
R1

Q1
− R0

Q0
, (20)

a′′0 =
S0
Q0

− S1
Q1

+

(

R1

Q1

)2

−
(

R0

Q0

)2

, (21)

where

Q =

∫ ∞

0
Tdz =

V̇

V

∫ ∞

0
Tdτ , (22a)
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R =

∫ ∞

0
Tzdz =

(

V̇

V

)2
∫ ∞

0
Tτ dτ , (22b)

S =

∫ ∞

0
Tz2dz =

(

V̇

V

)3
∫ ∞

0
Tτ2dτ . (22c)

With Eqs. (22), (20) and (17) either the mean residence time, τR, or the
capacity ratio, B, can be determined, if B or τR, respectively, are known
from the experimental data. Substituting Eq. (21) into Eq. (18) yields the
linear relationship between the unknowns 1/N and 1/Pe. In most cases B

can easily be determined from the design data of the exchanger and the fluid
properties. Then the following equation is recommended for evaluation

− a′′0
2 (a′0)

2 =
1

Pe
+

1

N

1

(1 +B)2
= ψ . (23)

The advantage of Eq. (23) is that in the left-hand ratio the dimensionless
time z in Q, R, S can be replaced by the real time τ or any other time scale.
Equation (23) reveals that one single blow experiment yields obviously only
one equation for the two unknowns N and Pe. Consequently two such
experiments are required with different values of B and the same N and
Pe (same Re and Pr). In the limiting case B→ ∞ any value of N would
provide the correct Pe. This is the analog to the tracer experiment, if T is
the tracer concentration. The same values of Pe are obtained as with the
method proposed in [6]. For liquids the capacity ratio may assume values of
1 < B < 10. With gases the ratio is much smaller, e.g., 0.001 < B < 0.01.
Then the derivatives a′0 → ∞ and a′′0 → ∞ and the Eqs. (20)–(22) may no
longer be applicable. This limiting case (B → 0) is considered separately
later in this paper.

3.2 Step-like signals

Till now the input signal and consequently also the outlet signal have been
regarded as a temperature pulse starting and ending with the initial uni-
form temperature. Cases may arise in which step-like signals are preferred.
In such cases Eq. (22) cannot be applied and the following approach is rec-
ommended.

The governing energy equations reveal that the solutions for the temper-
atures are also valid for their time derivatives. For that reason the measured
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step functions starting with zero and ending with a fixed value can be differ-
entiated numerically with respect to time and the obtained pulse functions
can be evaluated in the described way.

It is more convenient to calculate the moments Q ’, R’, S ’ directly from
the original step functions

Q′ =
∫ T∞

T0

dT = T∞ − T0 , (24a)

R′ =
∫ T∞

T0

zdT , (24b)

V̇

V

∫ T∞

T0

τ dT, S′ =
∫ T∞

T0

z2dT =

(

V̇

V

)2
∫ T∞

T0

τ2dT , (24c)

and use them in Eqs. (20) and (21).

3.3 Combined systems

If the exchanger consists of a number of n subsystems in series and/or
parallel flow arrangements (e.g., tube bundle plus two headers), combining
rules are required for the Ni, Pei and Bi of the subsystems and the overall
values or the measured derivatives a′0 and a′′0 of the combined system. The
rules are used to extract parameters of the subsystem of interest (e.g., tube
bundle) from the measured parameters of the combined system (e.g., tube
bundle plus headers).

Suitable combining rules have been derived from mass and energy bal-
ances. For arbitrary flow arrangements the first derivative

a′0 = 1 +
1

B
= 1 +

n
∑

i=1

υi
Bi

. (25)

The combining rule for n subsystems in series flow arrangement is

−1

2
a′′0 =

1

N

1

B2
+

1

Pe

(

1 +
1

B

)2

=

n
∑

i=1

υ2i

[

1

Ni

1

B2
i

+
1

Pei

(

1 +
1

Bi

)2
]

.

(26)
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For n subsystems in parallel flow arrangement

(

a′0
)2 − a′′0 =

2

N

1

B2
+

(

1 +
2

Pe

)(

1 +
1

B

)2

=

=

n
∑

i=1

υ2i
υ̇i

[

2

Ni

1

B2
i

+

(

1 +
2

Pei

)(

1 +
1

Bi

)2
]

. (27)

For parallel arrangement of one forward flow system f and one backflow
system b, where the total volumetric flow rate V̇ = V̇f − V̇b > 0 and the
total volume V = Vf + Vb, the derivatives and overall parameters of the
complete system can be expressed as

−
(

a′0
)2 − a′′0 =

2

N

1

B2
+

(

2

Pe
− 1

)(

1 +
1

B

)2

=

=
υ2f
υ̇f

[

2

Nf

1

B2
f

+

(

2

Pef
− 1

)(

1 +
1

Bf

)2
]

+
υ2b
υ̇b

[

2

Nb

1

B2
b

+

(

2

Peb
+ 1

)(

1 +
1

Bb

)2
]

. (28)

The systems f and b can consist of subsystems (parallel or series) for
which first Eqs. (25)–(27) have to be applied. The derivatives on the left
hand side of Eqs.(25)–(28) are determined from the measured profiles using
Eqs. (20)–(??). The overall values N and Pe are valid for the single blow
process and do not necessarily compare with the steady state values. For
the tracer experiment where Bi = ∞ and B = ∞, the Eqs. (26)–(28)
yield the correct overall mean value of Pe for s = 0, defined in [6]. For the
example of maldistribution with backflow the correct value Pe = 245/73
[6, tab. 1] can directly be calculated using the above Eqs. (27) and (28).

4 Calculated example

To demonstrate the application of the derived equations, an example with
calculated experimental data is presented. As in the previous example [7]
the evaluation of tracer experiments, the shell side of a shell and tube ex-
changer with two baffles is considered. Fluid flow and heat transfer are
assumed to follow the cascade model with n = 3 identical mixed zones.
The fluid is water which gives the estimated capacity ratio B = 4. The
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number of transfer units N = 2.4. An inlet temperature pulse is given as

0 ≤ z ≤ z1 : T0 (z) =
π
2z1

sin
(

π
z1
z
)

z > z1 : T0 (z) = 0
. (29)

For the calculation of the ‘experimental’ outlet pulse Eq. (29) is Laplace
transformed yielding

T̄0 (s) =
1

2

1 + e−sz1

1 +
(

sz1
π

)2 . (30)

Applying Eqs. (15), (A4) and (30) gives the transformed outlet signal T̄1 (s),
from which the outlet temperature profile T 1(z ) is calculated with help of
numerical inversion [8]. The calculated experimental inlet and outlet signals
are shown in Fig. 1 for z1 = 5 (T0(z) and T1(z), B = 4).

Figure 1: Calculated inlet and outlet profiles of three single blow experiments: Tracer
(B = ∞), single blow water (B = 4) and single blow methanol (B = 1.892).
The given data of the cascade model are N = 2.4, n = 3, z1 = 5. For
the dispersion model Pe = 6; right) Equivalent step-like profiles found by
integration of profiles on the left. They are valid for the same data N, n, Pe,
B as on the left.

4.1 Test of Equation (23)

In order to test the validity of Eq. (23) the outlet profiles are also calculated
using the Eq. (16) for the dispersion model. Not only the given values
N = 2.4 and Pe = 2n = 6 but also various pairs of N and Pe are used.
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The calculations reveal that pairs which fulfill Eq. (23) nearly yield exactly
the same outlet profile shown in Fig. 1. Minor deviations lie within the
drawing and undoubtedly within the measurement accuracy. The correct
pair 2.4/6 does not provide a better fit than other pairs from Eq. (23).
Pairs which do not fulfill Eq. (23) yield more or less remarkably deviating
outlet profiles. The results confirm the Eq. (23) and demonstrate that
even a sophisticated curve matching method which compares measured and
calculated outlet profiles could not provide a reliable pair of N and Pe.
Thus another experiment for a second equation for N and Pe is definitely
required.

Two additional experiments are considered, the tracer experiment and
a single blow test with another liquid.

4.2 Tracer experiment

This experiment is performed with the same liquid water under the same
flow conditions (Re, Pr) as the first single blow test (B = 4). Due to the
analogy of heat and mass transfer the tracer experiment can be regarded
and evaluated as an adiabatic single blow experiment with B = ∞ (and/or
N = 0). The temperatures are the tracer concentrations. The dispersive
Peclet number is the same as for the single blow test. The same equations
are applied as in the previous single blow experiment. Using the same
inlet profile, the outlet profile is calculated as described before. The outlet
concentration T1(z), B = ∞, is drawn in Fig. 1.

4.3 Single blow with methanol

The first single blow test has been performed with water (20 ◦C), ρ cp =
4177.5 kJ/(m3 K), Pr = 7.004, ν = 1.003 × 10−6 m2/s, B = 4. The second
single blow is carried out with methanol (20 ◦C), ρ cp = 1976.0 kJ/(m3 K),
Pr = 7.200, ν = 0.740× 10−6 m2/s, B = 1.892. The Reynolds and Prandtl
numbers have to be the same. The Prandtl numbers in both tests can easily
be adapted with a slight temperature change. For Re the flow velocity has
to be changed according to the ratio of viscosities. With the same inlet
profile as function of z (z1 = 5), the same Re and Pr (and consequently N

and Pe), and with B = 1.892 the outlet profile is calculated as described
before and given in Fig. 1 as T 1(z ), B = 1.892.
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4.4 Numerical evaluation

The calculated inlet and outlet profiles in Fig. 1 are regarded as exper-
imental curves and are numerically evaluated using Eqs. (20)–(23). The
numerical results for Q, R, S and ψ are presented in Tab. 1 together with
the exact values of ψ, calculated directly from the given values of B, N,
Pe = 2n, using Eq. (23). Each experiment yields one Eq. (23) with the re-
lated values of B and ψ. Combining the equations yields one experimental
pair of N and Pe. The final results are given in Tab. 2.

Table 1: Results of the numerical evaluation of the calculated profiles shown in Fig. 1
for the tracer experiment (B = ∞), the single blow with water (B = 4) and
the single blow with methanol (B = 1.892). Q0, R0 and S0 are the same for all
three experiments. In brackets are the exact values from analytical integrations
using Eq. (29) for T0(z).

Item B = ∞ B = 4 B = 1.892

Q0, Eq. (22) 1.000099(1.00̄ . . .)

R0, Eq. (22) 2.500061(2.50̄ . . .)

S0, Eq. (22) 7.433874 (7.433941)

Q1, Eq. (22) 1.000112 1.000112 1.000112

R1, Eq. (22) 3.500129 3.750138 4.028688

S1, Eq. (22) 13.767425 15.819532 18.424865

ψ, Eqs. (20), (21) and (23) 0.166853 0.183484 0.216610

ψexact, Eq. (23) 0.166̄ . . . 0.1833̄ . . . 0.216485

Table 2: Final results N and Pe of the evaluation of three pairs of calculated experiments.
1. Tracer (B = ∞) and single blow with water (B = 4). 2. Two single blow with
water (B = 4) and methanol (B = 1.892). 3. Tracer (B = ∞) and methanol
(B = 1.892).

No. B B N Pe n Pep

1 ∞ 4 2.4051 (+0.2%) 5.9933 (-0.1%) 2.9967 (-0.1%) 4.7399 (-0.2%)

2 4 1.892 2.4019 (+0.08%) 5.9941 (-0.1%) 2.9971 (-0.1%) 4.7408 (-0.1%)

3 1.892 ∞ 2.4090 (+0.4%) 5.9933 (-0.1%) 2.9967 (-0.1%) 4.7399 (-0.2%)

The number n of the cascade model and Pep of the parabolic model are
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calculated from the ‘measured’ Pe with help of Eq. (19). The deviations
from the correct values N = 2.4, n = 3, Pe = 6, Pep = 4.7470 are inaccuracies
during numerical inversion and numerical integration. The same values and
accuracy of ψ, N and Pe would be obtained when different dimensionless
pulse durations z 1 or even differently shaped inlet pulses would be applied
for the three calculated experiments.

The above results clearly demonstrate that in the case of liquids reliable
values of N and Pe (and n, Pep) can be obtained if two experiments are
carried out at the same Re and Pr, namely either one single blow plus one
tracer experiment (B = ∞), or two single blow experiments with different
liquids (different B).

Another way for liquids in heat exchangers is the combination of single
blow and traditional steady state experiments. Numerous measurements
with variations of Re and Pr have to be carried out, preferably under con-
stant conditions in the other flow channel (rear side of the wall). The single
blow yields ψ(Re, Pr) for B > 0, e.g., B = 4. The steady state experiment
provides Nd(Re, Pr) = ψ(Re, Pr) for B = 0. Applying the well known
Wilson plot technique [9] with a common least square estimation one can
develop correlations for Nu(Re, Pr) and Pe(Re, Pr), where Pe may usually
depend on geometry only, Pe = const.

If gases are involved steady state and single blow experiments yield both
nearly the same information as B approaches zero. Special considerations
are required for the evaluation of single blow experiments since for B → 0
a′0 → ∞ and a′′0 → ∞, and the above developed evaluation method cannot
be applied.

5 Single blow with gases

5.1 Limiting case B = 0

First the limiting case B = 0 is considered in which the dimensionless
wall temperature remains constant at tw = 0. The solution, Eq. (16),
simplifies to

1

a (s)
=

1

N + s
+

1

Pe + s
. (31)

For s = 0
1

a0
=

1

N
+

1

Pe
=

1

Nd
. (32)
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The exponent a0 equals the effective dispersive number of transfer units Nd

for steady state operation, given with Eq. (1).
Integrating the measured inlet and outlet pulses yields Q0 and Q1

(Eq. (22)). The Eq. (15) gives

a0 = ln

(

Q0

Q1

)

= Nd . (33)

This equation describes also steady state cooling in a heat exchanger with
constant wall temperature, if Q0 and Q1 are the mean inlet and outlet
temperatures.

5.2 Cross-flow corrections for changing wall temperature

The value of Nd from Eq. (33) is too low as the true mean temperature
difference between gas and wall is smaller than in case of constant wall
temperature. To account for small changes of wall temperature, the tran-
sient single blow process is regarded as a steady state cross-flow process in
a heat exchanger. Q0 is the inlet and Q1 the outlet temperature. The hot
fluid is the gas with flow path x, the cold fluid is the wall with time τ or
z as flow direction coordinate. The heat capacity flow rate of the wall is
Cw/τ1 with τ1 as the duration of the measured inlet pulse. Pure cross-
flow (unmixed-unmixed) is the appropriate flow arrangement, as no wall
heat conduction in the x -direction is assumed. Introducing the single blow
parameters, the known equation for pure cross-flow [5] can be written as

Bz1

(

1− Q∗
1

Q∗
0

)

=

1

Nd

∞
∑

m=0







1− e−Nd

m
∑

j=0

1

j!
N j
d







1− e−NdBz1

m
∑

j=0

1

j!
(NdBz1)

j







 (34)

with

Q∗ =
∫ z1

z=0
Tdz . (35)

For Bz1 → 0 Nd from Eq. (34) approaches that of Eq. (33), calculated with
Q∗

0 and Q∗
1.

If one assumes infinite thermal conductivity of the wall, λw = ∞, the
Eq. (34) has to be replaced by the known equation [5] for mixed-unmixed
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cross-flow (wall = mixed fluid):

Nd = − ln

{

1 +
1

Bz1
ln

[

1−Bz1

(

1− Q∗
1

Q∗
0

)]}

, (36)

which equation yields the upper limit of Nd: Nd,36 ≥ Nd,34 ≥ Nd,33 (with
Q∗ in Eq. (33)).

5.3 Calculated example

The evaluation method for gases is tested with a calculated single blow ex-
periment. It is first assumed that the real process follows the dispersion
model with Pe = 12, N = 3 and B = 0.002. These data are similar to those
of earlier experiments with air in a wind tunnel [3].

In example 1 the previous inlet profile according to Eqs. (29) and (30) is
used with a longer dimensionless pulse duration z1 = 25. Applying Eq. (16)
yields T̄1 (s) and numerical inversion gives the calculated ‘experimental’ out-
let profile T1(z) shown in Fig. 2 together with T0(z). Integrations according
to Eq. (35) yield Q∗

0 and Q∗
1. Then Nd,34 and Nd,36 are calculated using

Eqs. (34) and (36), respectively. Then the same example is calculated with
the ‘experimental’ inlet profile from the cascade model with n = 6. Both
results are presented in Tab. 3.

In example 2 it is tested whether or not the method can be applied to
cases in which both profiles are incomplete (not back to zero) as shown in
Fig. 3. The equations for the inlet pulse are given as

T0 (z) =
1

36
z exp

(

−z
6

)

, (37)

T̄0 (s) =
1

(1 + 6s)2
, (38)

Q∗
0 = 1−

(

1 +
1

6
z1

)

exp
(

−z1
6

)

. (39)

The results of the calculation are also given in Tab. 3.
If the single blow process follows the dispersion model, the cross-flow

correction method yields for both examples very good values of the effective
number of transfer units Nd = Nd,34. The relative error falls below ±0.5%.
This demonstrates that the simple cross-flow correction is quite effective.
The higher values of Nd,36 from Eq. (36) confirm that with λw = ∞ higher
heat transfer coefficients would be required than with λw = 0.
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Figure 2: Calculated profiles of example 1 for single blow with a gas (B = 0.002). T0(z)
from Eq. (29). T1(z) for dispersion model with N = 3 and Pe = 12. For
cascade model with n = 6 T 1(z) is qualitatively the same.

Figure 3: Calculated profiles of example 2 for single blow with a gas (B = 0.002). T0(z)
from Eq. (37). T1(z) for dispersion model with N = 3, Pe = 12 and cascade
model (qualitatively) with n = 6.

Looking at the results of the experiments which follow the cascade model
with n = Pe/2 = 6 shows that the obtained Nd are higher, Nd,34 > 2.4.
The reason is that the wall temperature remains nearly constant during
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the single blow process and the exponent a0(B = 0, s = 0) is used for the
evaluation instead of a′′0(B > 0, s = 0). The relationship Eq. (19) is not
valid here but the following equation for tw = const:

Nd =

(

1

N
+

1

Pe

)−1

= n ln

(

1 +
N

n

)

= ln

[

1

Fp (σ = N/Pep)

]

(40)

with 1/Fp from Eq. (A3, σ = N/Pep) is a good approximation. This re-
lationship between Pe, n and Pep depends also on N. In the limiting case
N → 0 (tracer) Eq. (40) turns to Eq. (19). With N = 3 and n = 6 Eq. (40)
yields Nd = 2.433 which compares well with the ‘measured’ values of Tab. 3.
The corresponding Peclet number Pe = 12.867.

The Eq. (40) in connection with the cross-flow correction is also con-

Table 3: Results of numerical evaluation of calculated examples. Example 1: Pulse
Eq. (29), Fig. 2. Example 2: Pulse Eq. (37), Fig. 3. Single blow process
according to dispersion model with Pe = 12, according to cascade model with
n = 6. a0 = Nd,31 for tw = const, Nd,32 is the actual result after cross-flow
correction, Nd,34 is the upper limiting value for λw = ∞.

Example Model Nd,33, (33), (35) Nd,34, (34), (35) Nd,36, (36), (35)

1 Pe = 12 2.2742 (-5.2%) 2.4109 (+0.45%) 2.4994 (+4.1%)

pulse (29) n = 6 3.3020 (-4.1%) 2.4421 (+1.8%) 2.5360 (+5.7%)

2 Pe = 12 2.2569 (-6.0%) 2.3915 (-0.36%) 2.4768 (+3.2%)

pulse (37) n = 6 2.2837 (-4.9%) 2.4215 (+0.90%) 2.5118 (+4.7%)

1 + 2
Pe = 12 2.2656 (-5.6%) 2.4012 (+0.05%) 2.4881 (+3.7%)

n = 6 2.2928 (-4.5%) 2.4318 (+1.3%) 2.5239 (+5.2%)

firmed with the data of one single blow experiment with air of ref [3]. Evalu-
ating the profiles of Fig. 5 [3], according to the cross-flow correction method
yields Nd,34 = 2.5084 (λw = 0) and Nd,36 = 2.6052 (λw = ∞). The curve
matching method [3] developed for the parabolic dispersion model with con-
sideration of axial wall heat conduction in the walls (copper plates) yielded
N = 3.172 and 1/Pep = 0.1103. Introducing these values in Eqs. (A4) and
(40) gives Nd,40 = 2.5363 and the reasonable relationship Nd,32 = 2.5084 <
Nd,40 = 2.5363 < Nd,36 = 2.6052. Further evaluations of the experiments
[3] are planned and beyond the scope of this paper.
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5.4 Determination of N and Pe from Nd

For design calculations (steady state) the measured values of Nd(1/Nd =
1/N + 1/Pe, Eq. (1)) and the corresponding heat transfer coefficient αd
can directly be used without knowing N and Pe. For the calculation or
evaluation of transient processes also Pe and N have to be known. For
their determination a second test with another gas would not provide new
information since (1+B) remains nearly the same. Hence an additional
tracer experiment could be recommended with evaluation according to the
described method for liquids with B = ∞. Incomplete inlet concentration
profiles as in example 2 for gases are not allowed and usually do not oc-
cur. The outlet profiles look similar to those in Fig. 1. The evaluation
would yield the correct value Pe = 12 = 2n for both the dispersion model
(Pe = 12) and the cascade model experiment (n = 6). If the process (gas)
follows the dispersion model (Pe = 12) one would obtain the correct N ≈ 3
from the measured Nd ≈ 2.4 (single blow) and Pe ≈ 12 from the tracer
experiment. However, if the single blow process (gas) follows the cascade
model (n = 6) the measured mean value Nd = 2.4318 (Tab. 3) would yield
only the approximate value N = 3.05. This fundamental inaccuracy cannot
be avoided. With lower Pe the error increases.

If only a rough estimation of N and Pe from the measured effective value
Nd is needed, the following simple approach appears useful. Two equations
for N and Pe are required. The first is Eq. (1) and the second is Eq. (16)
with one given value of s = s1.

If the process follows the dispersion model any value of s will yield the
correct result, provided the quantity a(s1) can properly be determined from
the measured profiles. As one or both profiles may not reach zero within
the range of measurements (see Figs. 2 and 3) one has to select a suffi-
ciently large positive value s1 > 0, to ensure that the rest of the profiles
can be cut off at z1 without affecting the numerically Laplace transformed
temperatures T̄ (s1) and consequently a1 = a(s1). Substituting in Eq. (16)
N according to Eq. (1) and solving for 1/Pe yields

1
Pe1,2

= D ∓
√

D2 + 2D(a1−s1)−1
s1(2a1−s1) ,

D = 1
2

(

1
Nd

+ B
s1

)

.
(41)

The experimental values a1(s1) have to be determined numerically accord-
ing to Eq. (15) from the measured profiles. For this test the values of a1

are calculated from Eqs (16) and (A4). The value s1 = 0.5 is used for
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both examples. The mean values of Nd and the exact value Nd = 2.4 are
considered. The results are presented in Tab. 4.

Table 4: Calculated N and Pe using Eq. (16) with s = 1/2 from given Nd = 2.4 and
‘measured’ mean values Nd,34 of Tab. 3. All values of correct solutions with
relative deviations (%) from N = 3 or Pe = 12, respectively.

Model of
experiment

Nd,34 Pe1,2 (41) N 1,2 (1)

N = 3
2.4000

12.0000 (0%) 3.0000 (0%)

Pe = 12 2.9644 12.6050

N = 3
2.4012

11.8886 (-0.93%) 3.0089 (+0.3%)

Pe = 12 2.9731 12.4822

N = 3
2.4318

11.2417 (-6.3%) 3.1030 (+3.4%)

n = 6 3.0650 11.7710

The results of table 4 show very good results for N and Pe if the single blow
process follows exactly the unity Mach number dispersion model. Two pairs
of N and Pe are found for one experiment. Usually the higher number will
be the Peclet number. If the process follows the cascade model the obtained
N and Pe are only approximations. The resulting N is 3.4% too high. A
higher accuracy cannot be expected from such simple evaluation method.
As the values of N and Pe are not needed for design calculations the errors
can be tolerated. More precise results for Pe and N can be obtained from an
additional tracer experiment or from a sophisticated curve matching method
[3] which would have to be adapted to the unity Mach number dispersion
model. But also such method cannot yet guarantee 100% reliability.

6 Conclusions

1. Single blow tests can be evaluated with consideration of the unity
Mach number axial dispersion model.

2. One single blow test alone cannot provide reliable values for the dis-
persive Peclet number and the related true heat transfer coefficient.

3. With liquids reliable results for both unknowns can be obtained from
two experiments: Either two single blow tests with different liquids, or
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one single blow and one tracer experiment using the same or another
liquid.

4. With one liquid a combination of single blow and steady state exper-
iments can provide reliable correlations for heat transfer coefficient
and dispersive Peclet number.

5. With gases one single blow experiment yields a suitable value for the
effective heat transfer coefficient which can be used for design calcu-
lations. Additionally approximate values of heat transfer coefficient
and Peclet number can be obtained.
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Appendix

Derivatives of a(s) from Eq. (14)

a′0 =
∂a

∂s

∣

∣

∣

∣

s=0

= 1 +

∫ 1

x=0

m
∑

i=1

dx

Bi
, (A1)

a′′0 =
∂2a

∂s2

∣

∣

∣

∣

s=0

= −2

∫ 1

x=0

m
∑

i=1

dx

NiB2
i

− 2

Pe

∫ 1

x=0

(

1 +
m
∑

i=1

1

Bi

)2

dx . (A2)

Parabolic dispersion model (M = 0, Pep)

1
F (s) =

1
2

(

1 + 1+2σ√
1+4σ

)

exp
[

−Pep
2

(

1−
√
1 + 4σ

)

]

+

1
2

(

1− 1+2σ√
1+4σ

)

exp
[

−Pep
2

(

1 +
√
1 + 4σ

)

]

σ = 1
Pep

(

s+ 1
1
N
+B

s

)

. (A3)

Cascade model (n mixed zones)

1

F (s)
=

[

1 +
1

n

(

s+
1

1
N + B

s

)]n

. (A4)


