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INTRODUCTION

Intergenerational transmission of reproductive patterns has interested demographers 
and representatives of other sciences since the end of the nineteenth century. Pioneers 
in this field were Pearson, Lee and Bramley-Moore, who analyzed the correlation 
between fertility in subsequent generations among wealthy British population 
(Pearson and Lee 1899, Pearson et al. 1899). Several relations were investigated: 
mother-daughter, father-son and grandparents-grandsons/granddaughters. The 
strongest correlation was observed between fertility of mothers and daughters. Since 
these studies, scientific interest in reproductive behavior within the family began to 
grow rapidly, and further studies, in which different communities living in different 
periods were considered, provide new knowledge and at the same time have revealed 
new research problems and areas of dependence (see Fisher 1930, Langford and 
Wilson 1985: 437–443, Anderton et al. 1987: 467–480, Murphy 1987: 463–485, 
Bocquet-Appel and Jakobi 1993: 335–347). Review of these researches was done by 
Murphy (Murphy 1999: 122–145). The summarization of those studies revealed that 
the strongest dependence had occurred among mothers’ and daughters’ populations. 
Additionally, the connection between fertility of parents and their children seems 
to be insignificant among pre-transitional populations, but becomes more important 
over time, especially in developed countries. What is more, Murphy emphasized 

1 The Polish data was not chosen because of the two following reasons: firstly, the paper was pre-
pared based on the research problem concerning Austria that was discussed during the Vienna Institute 
of Demography Colloquium in 31 Jan 2013; secondly, the study was conducted when the GGS-PL data 
were not yet publicly available. 
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that before the second demographic transition the connection between fertility of 
parents and children was negligible, because there were no significant correlation 
coefficients. However, the connection has changed over time and the impact of the 
fertility pattern in the origin-family home has become more and more important 
among subsequent generations. Murphy suggested that in developed countries this 
connection might even have similar importance to other socio-economic determinants, 
e.g., the education of a woman. 

There are two major theoretical approaches that refer to intergenerational 
transmission of fertility patterns: the Easterlin hypothesis (Easterlin 1978, 1987) 
and the Low Fertility Trap Hypothesis (LFTH), first proposed by Wolfgang Lutz 
and Vegard Skirbekk (Lutz and Skirbekk 2005) and developed later together with 
Maria Rita Testa (Lutz et al. 2006). 

Easterlin claimed that fertility is a cyclic, fluctuating process, in which huge 
generations are more likely to provide a small number of offspring, and vice 
versa – small ones provide big subsequent generations. The changes in individual 
family size are observed due to preferences of potential parents which were already 
shaped during their adolescence. Young adult people compare the quality of their 
life (often measured by income) with the life of their parents, and, when they think 
they are more successful, they will be more likely to have a big family. On the other 
hand, when they find themselves in a worse position than their parents were, they 
will decide to have fewer children. The fluctuations in the fertility process occur 
mainly due to different opportunities of individuals living in different environments. 
The environmental conditions (e.g., labour market) are created by the size of 
a generation: big generations provide a more competitive, insecure environment 
in which individuals reduce their fertility, while small generations ensure more 
peaceful, calmer conditions that consequently encourage individuals to have bigger 
families. 

The Low Fertility Trap Hypothesis aims to explain possible “self-reinforcing” 
changes in fertility in countries with already low fertility level. The hypothesis 
consists of three components. The first is purely demographic and is based on 
a negative momentum: fewer women in the future will provide fewer children. 
The second one is sociological and claims that when the actual fertility is low, 
the next generations will “inherit” this low fertility level and the ideal family size 
among young generations will decline. The third one is economic and is based on 
the Easterlin hypothesis, mentioned above. It assumes that aspirations of the next 
generations are increasing, while simultaneously their expected income is declining, 
and consequently both will result with lower fertility. Authors of the LFTH, 
through the second and third components, drew major attention to the importance 
of the transmission of fertility pattern among generations. They warned that no 
immediate actions taken by the government in low fertility countries will lead to 
the “downward spiral” in the number of births and an inescapable fertility “trap” 
(Lutz et al. 2006). 
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The connection between reproductive behaviors among family still appears 
as a current problem. Hognas and Carlson in their study from 2012 showed that 
among the US population, children born to unmarried parents are more likely 
to have a nonmarital first birth, so the transmission of nonmarital childbearing 
across generations is observed and it is spreading over the population (Högnäs and 
Carlson 2012: 1480–94). Tanaka and Iwasa also investigated the transmission of 
fertility preferences in the case of the evolution of hinoeuma2 superstition in Japan 
(Tanaka and Iwasa 2012: 20–28). The results clearly showed that there is a strong 
connection between fertility of children and their mother. In those families where 
children “inherited” the belief in hinoeuma year from their mother, the superstition 
is continued in the next generation. On the other hand, in families where the father 
believed in hinoeuma, the superstition became weak in the next generation, and 
finally fully disappears. The multigenerational transmission of fertility patterns 
among the Swedish population was investigated by Kolk (Kolk 2011, 2013). There 
was revealed not only the strong positive connection between fertility of parents and 
children but also some influence of kin’s fertility pattern was observed. Additionally, 
the positive relation between a woman’s origin-family size and her own number of 
children was also revealed among the British contemporary population (Booth and 
Kee 2009). Similar results, but among the Polish historical population was revealed 
by Tymicki (Tymicki 2006). 

Investigating intergenerational transmission of fertility patterns was highly limited 
mostly because of difficulties in finding suitable, reliable multigenerational datasets. 
Nowadays, due to availability of large sample surveys or administrative digitized 
registers, intergenerational transmission of fertility can be analyzed deeper. So far, to 
explain the fertility pattern of the previous generation, the number of a respondent’s 
siblings was included in the analyses. However, the study of Martin-Matthews, who 
analyzed a sample of multigenerational families in Canada in 1995, has shown that 
there is a strong correlation between a woman’s age at childbearing and that of her 
mother, which consequently influences the daughter’s family size (Martin-Matthews 
et al. 2001). That is why it seems to be reasonable to explain the fertility pattern of 
the generation of mothers using not only the number of a daughter’s siblings but 
also the age of her mother at childbearing. What is more, in the literature so far 
there is no distinction between the impact of the fertility pattern of the previous 
generation separately on childlessness and parenthood. Considering the increasing 
percentage of childless couples in developed countries, it is worth taking into account 
both states. 

2 Hinoeuma is one of the sixty possible combinations of zodiac signs – it is the coexistence of 
the fire and the horse. It takes place every 60 years. Superstition connected with hinoeuma says that 
a woman born in this year will make wrong marital choices and therefore will be a bad wife for her 
future husband. The superstition in Japan is so strong that it led to significant decrease of number of 
births in subsequent hinoeuma years: 1846, 1906 and 1966. 
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Following Murphy’s suggestion that the transmission of fertility patterns could 
be very important among highly developed countries, and based on the previous 
studies that have shown significant connection between female generations, this 
paper concerns the analyses of Austrian women. Austria is an example of a highly-
developed country with still popular traditional gender family roles and much more 
family-oriented policy than, for example, Nordic countries or the United Kingdom. 
The fertility level has been stable over the past three decades with the total fertility 
rates hovering in the range of 1.3 to 1.5. However, Austria is observed to have one 
of the highest levels of childlessness, nowadays exceeding 20% of woman (Statistics 
Austria3, Spielauer 2005, Buber et al. 2012). 

The aim of this paper has clearly arisen from the reflections presented above 
– the main goal is to investigate the intergenerational transmission of fertility in 
contemporary populations taking as an example the case of the mother-daughter 
relation in Austria. In other words, the main interest of this study is to determine the 
effect of demographic variables, which describe the fertility pattern of the mother 
(number of children and age at childbearing) on the daughter’s family model. 
Simultaneously, several control variables specified for the daughter (age, place of 
residence, educational level, marital status) were included into the analysis. In the 
next step, to simulate the reproductive behavior according to levels of adopted 
characteristics, several female profiles will be constructed. 

In surveys on connection between fertility of parents and children it was widely 
adopted, following Pearson’s example, to use simple correlation analyses, mostly 
because of its simplicity and ease of interpretation. However, this method in more 
complicated problems does not always provide the proper results. Therefore, in 
this paper we propose the Zero-Inflated Poisson regression model estimated using 
a Bayesian approach that enables us to make formal inferences about uncertainty 
(the method was firstly proposed in Osiewalska 2012). Additionally, the ZIP 
model allows us to analyze childlessness and parenthood as separate states but still 
connected by the probability of childlessness.    

In view of the previous studies and results presented in the literature, within the 
main hypothesis we assume that family procreative behaviors among contemporary 
Austrian females are affected by the fertility pattern of the previous generation. 
The fertility pattern developed in the family home is represented by the number of 
a woman’s siblings and her mother’s age at childbearing. Additionally, three detailed 
hypotheses were formulated. The first one assumes that there is a positive correlation 
between a woman’s origin-family size and the total number of a woman’s children. 
In the second one we assume that procreative behavior of a woman is determined 
by her mother’s age at childbearing – the younger a mother is at the daughter’s 
birth, the bigger the daughter’s family. Finally, since becoming a parent for the first 
time is influenced by the family home conditions, for example, the support from 

3 http://www.statistik.at/web_en/
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relatives (Dommermuth et al. 2011), we expect that the fertility pattern of a mother 
has a stronger impact on the daughter’s probability of being childless than on the 
daughter’s expected family size (parenthood).

Data used in this study came from the first wave of the Generations and Gender 
Study4 for Austria (2008–2009). From the original dataset that consists of 3001 
women, 105 respondents were removed due to incomplete information about the 
respondent or her mother (only 3.5% of initial sample). Finally, 2896 “daughters” 
were taken into the analysis. This dataset is big enough to perform the formal 
inference and the lack of 3.5% of initial data does not disturb the results.  In the 
case of a small dataset, when omitting incomplete data would lead to deficient 
or even false results, Bayesian techniques of interpolation missing data could be 
useful (Osiewalski and Osiewalski 2012: 169–197). All calculations were done with 
R project. 

This study contributes to the current knowledge both empirically and 
methodologically. Contemporary female reproductive behaviors in Austria will 
be investigated in order to find the connection with the fertility patterns of the 
mothers’ generation. Mothers’ fertility patterns will be explained not only by the 
number of children (usually done in previous studies) but also by the mothers’ 
age at a daughter’s birth. Additionally, childlessness and parenthood will be 
distinguished during analysis. This approach will allow us to find new dependencies 
between mothers’ and daughters’ fertility patterns, which seems to be particularly 
important in view of one of the highest level of childlessness in Austria. This is 
an empirical contribution. On the methodological side, the Zero-Inflated Poisson 
model will be introduced for the first time in a wider demographic society5. It will 
be applied to the investigation of contemporary reproductive behavior. Therefore, 
complex analysis with the distinction between childlessness and parenthood 
implemented in one fertility model will become possible. Additionally, Bayesian 
approach to the ZIP model specification will be adapted, so it will be possible to 
incorporate prior knowledge and make precise analysis of uncertainty of the model’s 
parameters. 

This paper consists of four sections. Section I is an introduction, whereas in 
section II models applied in the research are described. Section III presents the 
estimations of the models and comments on results. Section IV demonstrates general 
conclusions.  

4 http://www.ggp-i.org/
5 The first note about the ZIP model in demography was made by Osiewalska in the typescript 

available in polish at Cracow University of Economics (Osiewalska 2012).
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MODELING TRANSMISSION OF FERTILITY PATTERN

ZERO-INFLATED POISSON MODEL

Due to the discrete nature of the analyzed event – the birth of a child (the number 
of children is a discrete variable) – in fertility analysis we are restricted to the 
count modeling framework. These models with appropriate specifications allow us 
to determine the impact of socio-economic factors on the studied phenomenon (Alho 
and Spencer 2005). The most common of count models is the Poisson distribution 
(perfect for rare events), which can be easily generalized to the Poisson regression 
model. In literature there are also other generalizations proposed, which may be 
useful for more (or less) zeros in datasets than the expected number of zeros in the 
standard Poisson distribution – they are called Zero-Inflated Poisson (ZIP) models 
(Lambert 1992: 1–14, Jansakul and Hinde 2001: 75–96).

To choose an appropriate model for the relationship between reproductive 
behavior of mothers and daughters, we need to take into consideration that among 
the analyzed population, a large number of childless daughters (zeros) occurs (see 
Figure 1). It is clear that the number of zeros in the sample exceeds the number 
which can be explained by standard the Poisson distribution. Besides, the zero value 
in fertility analysis has a different meaning – childlessness – and it is inappropriate 
or even wrong to compare a family with zero children to a family with one child in 
the same way that we compare one child versus two children families. Childlessness 
is a strongly different state than having at least one child. Therefore, in this study 
the Zero-Inflated Poisson model was applied. It is important that the specification 
of the model allows treating childlessness as a qualitatively different state than 
having children. It means that the ZIP model gives the opportunity to set up other 
determinants in modeling zero than in modeling counts. 

Figure 1. Number of children ever born

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7



9

Transmission of Fertility Pattern in Mother-Daughter Relation – Bayesian view...

The Zero-Inflated Poisson regression model was used with the following form 
(compare: Lambert 1992: 1–14, Jansakul and Hinde 2001: 75–96, Marzec and 
Osiewalski 2012). The independent variables Y = [Y1,...,Yn]  are derived from the 
Zero-Inflated Poisson distribution. The ZIP distribution for the variable Yi, denoted 
by ZIP(λi, pi), can be represented as follows: 
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The ZIP model, as in equation (1), has two states: zero with probability p and 
count with probability (1 – p). If the aim of the analysis additionally includes 
determining the impact of selected variables on the studied phenomenon, the ZIP 
model for n observations can be modified as follows:
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where xj, xj are covariate vectors for observation j=1,…,n, and γ, δ are vectors 
of parameters for, respectively, zero and count states. This form of parameters pj 
and λj ensures that the constraints on these parameters hold. It should be noted 
that p and λ are increasing functions of, respectively, γ and δ for fixed covariate 
vectors xj or wj.

Standard methods for the ZIP model’s estimation are relatively simple to use, 
because of their usually uncomplicated numerical structure, as well as the wide 
availability in many statistical packages (e.g., in R project in pscl library). However, 
these methods do not always provide the expected results. The first problem arises 
when it is numerically complex to find the global extremum of the likelihood function 
(e.g., the likelihood function takes a multimodal form). The second problem often 
occurs due to an insufficient number of observations, which leads to reduction of the 
possibility of asymptotic inference. The third barrier comes when research interests 
concern the nonlinear function of the parameters. Standard methods in the face of 
complex dependencies between parameters do not allow formal inference about 
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the uncertainty of nonlinear specification, because they require analytical results 
that are not always feasible. Within ZIP regression models, classical methods allow 
asymptotic estimation of uncertainty of regression parameters, but provide very 
rough information about uncertainty of the parameters p and λ.

When the problems presented above occur in the analysis and, at the same 
time, the interest of a study is to make formal inference about uncertainty without 
asymptotic properties or regardless of likelihood function shape, then the Bayesian 
inference is highly motivated.

BAYESIAN INFERENCE IN ZIP MODELS

Bayesian methods in demography are relatively rarely used, thus the opportunities 
they give are still not entirely familiarized. Bayesian analysis is often the only 
approach that allows researchers to obtain detailed analysis of the phenomenon 
in case of a small amount of data or in a situation when it is necessary to make 
inferences about non-linear functions of model parameters. In addition, this approach 
provides simple tools for effective forecasting and enables us to obtain covariates 
and their function distributions, as well as allows us to incorporate our a priori 
knowledge (from previous studies or experts’ beliefs). A more detailed outline of 
Bayesian inference can be found in Koop or Osiewalski monograph [Polish version] 
(Osiewalski 2001, Koop 2003) and in studies of the applications of Bayesian methods 
in the field of financial econometrics (Zellner 1971, Bernardo and Smith 1994, Pajor 
2003, Pipień 2006, Marzec 2008, Pajor 2010).

At first, the idea of Bayesian inference in demography was applied by Hyppola, 
Tunkelo, and Tornqvist, who applied a subjective approach to Finland population 
forecasting (Hgpölä et al. 1949). Due to the lack of computer power, which made 
Bayesian methods very laborious, the idea didn’t spread among demographers at 
that point. But in 1986 and 1988, again the usefulness of Bayesian methods in 
demography was pointed out by Land and Pflaumer (Land 1986: 888–901, Pflaumer 
1988: 135–142). Their studies encouraged other researchers to use a Bayesian 
approach. The idea has gained new followers and the popularity of Bayesian analysis 
among demographers has begun to increase slowly (Raftery 1995, Daponte et al 
1997: 1256–1267, Bijak and Wiśniowski 2010, Osiewalski and Zając 2010: 77–86, 
Bijak 2011, Osiewalski and Zając 2011: 21–39, Bryant and Graham 2011, Raftery 
et al. 2012: 13915–13921, Bryant and Graham 2013).

Let us denote by p(θ) the prior knowledge about all unknown parameters. 
Posterior distribution is then formed from the a priori distribution and likelihood 
function of the model. In our study, the a posteriori distribution has the form 
presented below:
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where Nf  and Nf   are density functions for correspondent a priori distributions of 
γ and δ parameters. 

Due to the unknown form of the posterior distribution6, which is multidimensional, 
non-linear and too complicated to perform direct integration to determine its 
main characteristics, the Metropolis and Hastings (MH) algorithm was used. The 
procedure enables us to draw from the a posteriori distribution even when its form 
is analytically complicated.

The idea of the Metropolis and Hastings algorithm is to use some known, non-
negative function q(θ*;θ(i–1)), called the proposal density, to generate a candidate 
state. Generally, the MH procedure consists of four subsequent steps [compare 
Geweke 1996, Robert and Casella 2005]:
1.  Set up the initial point θ(0) (it could be chosen arbitrary) and i=1.
2.  Generate θ* from the proposal density q(θ*;θ(i–1)) and u from the unitary distri-

bution U(0;1). 
3.  Check if the condition α(θ*,θ(i–1))≥u is fulfilled. If yes, set up θ(i) = θ*, otherwise 

(θ(i) = θ(i–1)). The α(θ*,θ(i–1)), called the acceptance probability, has the following 
form:
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where π(θy) is the kernel of the posterior density p(θy), so  π(θy) p(θy).
When q(θ*,θ(i–1)) is a symmetric function of θ* and θ(i–1), the formula (4) can be 

rewritten as:
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4.  Set up i=i+1 and repeat point 2 and 3 M times.

6 Although the analytical form of posterior distribution is given by (3), still we are not able to 
“recognize” any known distribution with given (defined) characteristics. The formula in (3) is also too 
complicated to calculate directly the characteristics of the posterior distribution.
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From a certain cycle i, the sample (θ(i),θ(i–1),...) can be treated as a draw from the 
posterior distribution [Geweke 1996]. 

In this study we set up the proposal density for each MH step as the multivariate 
t-Student distribution with 4 degrees of freedom, that is:

 4,,; )1()1( ik
St

i fq ,  (6)

where k is the number of parameters in the zero or count states (in this case k=7 for 
both states) and Σ is an appropriately selected variance and covariance matrix. The 
choice of matrix depends on the researcher’s preferences. This matrix is selected 
both to imitate in the best possible way the a posteriori distribution and to maintain 
the acceptance ratio at a reasonable level.

The problem presented in this study needed 100 000 initial cycles of the 
Metropolis and Hastings procedure (to “forget” the initial point, which usually is 
arbitrary chosen), then 150 000 burn-in cycles (to ensure convergence) and finally, 
100 000 cycles considered as a (pseudo) random sample from the a posteriori 
distribution.  

This number of burn-in cycles turned out to be sufficient to achieve 
convergence of the Metropolis and Hastings algorithm regarding to the CUSUM 
statistics proposed by Yu and Mykland (Yu and Mykland 1994). The CUSUM 
plot is presented in Figure 2. We can see that the cumulative sums for the final 
cycles (from 150 000 draw) do not exceed the interval (–0.05, 0.05). Therefore, it 
can be assumed that the number of cycles was sufficient to achieve the convergence 
and the final sample can be treated as draws from the stationary distribution. 
That is why in the next step the final cycles were used to determine marginal 
a posteriori distributions of γ1,...,γs and δ1,...,δr and calculate basic characteristics of 
the a posteriori distributions (expected value and standard deviation).
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Figure 2. The convergence of CUSUM statistics for the MH algorithm

BAYESIAN MODELS COMPARISON

In order to build the most probable model that would reflect the empirical data 
and the initial knowledge in the best way, Bayesian methods provide us with a very 
intuitive formal model comparison framework (Jeffreys 1961, Greene 2003). As we 
introduce a probability measure on the model space, we can use the Bayes theorem 
to build a posterior on it. Posterior probabilities are calculated for each analyzed 
model according to the Bayes theorem:

 m
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where  p(yMi) is the marginal data density in the i-th model (or simply: probability 
of our data when model i is applied), and  p(Mi) is the prior probability of model 
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i (conviction about model’s accuracy). Then the posterior odds ratio of two compet-
itive models should be calculated as follows:
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The posterior odds ratio provides information on how many times more probable 
the first model is than model 0.  For example, when PO=8, then model 1 is 8 times 
more probable than model 0. When the prior probability of model 1 is equal to the 
prior probability of model 0 (equal prior chances of each model), the posterior odds 
ratio simplifies to the Bayes factor (BF). Usually, the value of the BF is presented 
on a logarithmic scale. When 0<log10BF≤0.5, we can say that the data very weakly 
testify against the model 0 (so the first model is more or less as good as model 0); 
when 0.5<log10BF≤1, model 1 should be considered as better than model 0; when  
1<log10BF≤2, the data strongly pointed to model 1 as much better than model 0; 
and finally, when 2<log10BF, the first model is definitely much more accurate than 
model 0 (Kass and Raftery 1995). 

In the case that more than one model fits accurately to the data, then the next 
advantage of Bayesian methods could be taken – to include information given by 
each of the selected models, Bayesian pooling approach should be considered. The 
form of the posterior distribution is then as follows:
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where pi(θy) is the posterior density, while model i is applied. 
Usually (besides very basic models), to obtain the value of the Bayes factor that 

consists of two marginal data densities, numerical integration has to be performed. 
In this study, where only proper priors were used, to calculate the BF values Newton 
and Raftery’s harmonic mean estimator (HME) for  p(y was used (Newton and 
Raftery 1994):
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where θ(i) is a pseudorandom sample from the posterior distribution. The HME, as 
shown by Newton and Raftery, is consistent. However, it should also be emphasized 



15

Transmission of Fertility Pattern in Mother-Daughter Relation – Bayesian view...

that this estimator has two major disadvantages: the first – it has no finite asymptotic 
variance, and the second – in small samples it overestimates the marginal data den-
sity (Lenk 2009, Pajor and Osiewalski 2013). That is why using HME could some-
times yield misleading results. Therefore, especially when the model comparison 
procedure does not point out clearly the differences between competing models, it is 
advised to use the adjusted HME with Lenk’s correction (Lenk 2009). Nevertheless, 
in this study the standard HME will be used. The differences obtained with HME for 
the two competing models under consideration (ZIP and standard Poisson) was so 
big that including Lenk’s correction should not change the conclusion. In turn, results 
for selection of covariates were confirmed by later results given by the posterior 
distribution (to obtain the posterior distribution, HME is not needed). Therefore, in 
this study using the standard HME could be justified. However, in the next studies 
we plan to introduce the adjusted HME estimator. 

THE FORMATION OF REPRODUCTIVE BEHAVIORS AMONG 
AUSTRIAN WOMEN

VARIABLES DESCRIPTION 

To analyze intergenerational transmission of reproductive behavior, the following 
demographic variables describing the mother’s fertility pattern were chosen: number 
of respondent’s siblings and mother’s age at respondent’s birth. It should be noted that 
instead of mother’s age at respondent’s birth, the more appropriate variable seems 
to be mother’s age at first birth. Unfortunately, such information was not collected 
in GGS in Austria. Other variables were introduced in order to determine the basic 
daughter’s characteristics, which also may have an impact on the analyzed number 
of children, but they are not main interest of this study (treated as control variables). 
These are: age (in years), educational level (highest educational level completed), 
type of settlement (urban or rural areas) and marital status (whether respondent was 
ever married). It should be mentioned that education, type of settlement and marital 
status are treated as fixed over time with the value as in the moment of interview. 
These characteristics in some cases could be different at the time when children were 
born. If the proper data are available, these changes could be introduced using the 
methods of Event History Analyses (EHA). However EHA concentrates mainly on 
the duration between selected events and not on the total number of those events. 
That is why, if the main interest of the study is to analyze the total number of births 
and not the duration between births, the ZIP model seems to be more convenient. 
To introduce the proper values of characteristics at the moment of birth of a child 
(when known), other covariates could be included to the ZIP model as well (e.g., the 
educational level at birth of a particular child). In some cases however, we should 
expect that the correlation between included covariates (e.g., education at birth of 
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the first child and education at birth of the second child) will be probably very 
high. It could happen with covariates that generally do not change very often during 
lifetime (like education, being ever married, etc.). That is why the current values of 
characteristics such as education, marital status (treated as being ever married) or 
type of settlement, could be treated as an approximation of those values during the 
past life from a certain adult age, in case of lack of precise data. 

Table 1 shows the structure of the sample population regarding the selected main 
and control variables.

The variables number of siblings and mother’s age at respondent’s birth, describe 
the fertility pattern developed in respondent’s family home. From the data structure 
(Table 1), we can see that among the population of mothers, the typical number of 
children was two (so one sibling), while the largest number of children reached 14 
(13 siblings). The most common age at respondent’s birth was 23. The youngest 
mother at respondent’s birth was 13 years old (3 women), and the oldest one – 46 
years old (1 woman). 

The first control variable type of settlement is divided into the following two 
levels: urban and rural areas. The possible differences within life styles in these two 
areas could influence the reproductive behaviors in a different manner. The majority 
of respondents from the studied population lived in urban areas (59.4%). 

Within education, the six following levels are distinguished: primary, lower 
secondary, upper secondary, post-secondary, the first stage of tertiary, and the second 
stage of tertiary education. These levels are subject to the ISCED7 classification 
adopted in the Austrian educational system. The introduction of this variable is 
justified by differences in reproductive behavior depending on education. The 
majority of daughters have upper secondary education (50.1%), while primary and 
second stage of tertiary education have only several respondents – respectively 15 
women (0.5%) and 46 women (1.6%). 

Marital status is divided into two levels, which split the population of women 
into those who have never been married and those who are married or were at least 
married once (so also widows and divorcees).  

The population considered in this study (female respondents from the first wave 
of Generations and Gender Study in Austria in 2008 and 2009) was born between 
1963 and 1990, so at the time of survey these respondents were between 18 and 
46 years old. In this group, there were only two 18-year-old women and only four 
women who were 46. The number of respondents at the age from 19 to 45 was 
similar in each particular age, with a slight predominance of older ages.

7 ISCED – International Standard Classification of Education designed by UNESCO
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T  able 1.  Data structure

Variable Level Structure
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PRIOR MODEL ASSUMPTIONS AND POSTERIOR RESULTS

The need for a model that would allow analysis of a larger than expected number 
of zeros was supported by a formal Bayesian models comparison. The ZIP model 
was compared with the commonly used standard Poisson regression model. The 
prior probability was the same for each model (0.5 for ZIP and 0.5 for standard 
Poisson). The results clearly pointed that the ZIP model is much more adequate for 
the analyzed data – the decimal logarithm of the posterior odds ratio (in that case 
equal to the Bayes factor) is equal to 64. It means that the ZIP model is 1064 times 
more probable than the standard Poisson regression.

The ZIP model is based on γ and δ parameters (with dimensions s=r=7) for which 
the following a priori distributions were chosen:

 1,01.0,1,10.0,1,1,1,0~ 17 diagMVN x   (11)

 05.0,0005.0,05.0,0005.0,05.0,05.0,05.0,0~ 17 diagMVN x   (12)

The hyperparameters of the a priori distributions were chosen to both enable all 
possible values and remain coherent with the common knowledge in the case of a 
hypothetical woman. It has to be emphasized that in fertility analyses of contemporary 
populations, the prior distribution should set higher probabilities for smaller numbers 
of children (from zero to 3) and at the same time very low probabilities (even equal 
zero) for numbers of children bigger than 15. 

Let x be a covariate vector representing features of a chosen respondent, for 
example, x = (0, 4, 1, 30, 2, 23, 1) represents a woman who lives in rural area, has 
post-secondary education, is married, is 30 years old, has 2 siblings and her mother 
was 23 at the respondent’s birth (1 on the last place stands for the intercept). Then, 
based on 10 000 draws from priors of γ and δ parameters, p and λ distributions for 
the chosen respondent were determined (Figure 3).

Subsequently, we specified the a priori distribution of number of children for the 
chosen woman (assuming prior distributions as previously). Results are presented 
in Figure 4. As we can see, the distribution of number of children assigns non-zero 
probability for all expected a priori values, therefore it seems to be a reasonable 
expression of our initial knowledge about the analyzed variable before looking into 
the data.



19

Transmission of Fertility Pattern in Mother-Daughter Relation – Bayesian view...

 Figure 3.  The p and λ distributions for a chosen woman 

 Figure 4.  The prior distribution of number of children for a chosen woman 
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To build the final model, which has the most adequate set of covariates, 
and to check if there are some competitive models, Bayesian comparison was 
applied. Each time two models were compared: a full model (with all covariates) 
and a model without one chosen covariate. The prior chances for these models 
were always equal. When a covariate occurred to be negligible then the new “full 
model” is created (a model without this covariate) and the comparison starts again. 
The procedure is finished when there are no other negligible covariates. The decimal 
logarithms of the Bayes factor for the full model versus the model without one 
covariate are presented in the Table 2. The BF for the covariate number of siblings is 
equal 7.1. It means that the full model is a posteriori 107.1 times more probable than 
the model without the number of siblings. The similar result is visible for mother’s 
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age at respondent’s birth (BF equals 2.8). The smallest value of BF occurred for the 
control covariate type of settlement, but still the value 1.0 means that full model is 
better than model without this covariate. The analysis confirmed that the a posteriori 
most probable model is the model with all chosen covariates. There is no need for 
the Bayesian pooling approach8.

Table 2.  Logarithms of the Bayes factors

 Variable Logarithms of the Bayes factor 
(full model vs model without the covariate)

Type of settlement 1.008

Education 14.090

Marital status 118.835

Age 68.119

Number of siblings 7.069

Mother’s age at respondent’s birth 2.800

Marginal a posteriori distributions of all considered parameters are shown in 
Figures 5 and 6. The dotted line represents the corresponding prior in order to 
compare the two distributions and illustrate the strength of inference about the 
selected parameter based on the data. In turn, the dots mark 2.5% and 97.5% 
quantiles, which are helpful in determining the impact of the parameter on the 
modeled variable number of children ever born. If a zero value in the marginal 
a posteriori distribution of the parameter lies outside the interval set by the quantiles 
(so-called the highest posterior density interval – HPD), then it can be assumed 
that it has a significant impact on the analyzed phenomenon. However, if there is a 
substantial probability that the parameter can be equal zero (so zero belongs to the 
HPD interval) then its effect is treated as neutral or negligible.

It should be noted, that all obtained marginal posterior distributions compared 
to corresponding priors are more centralized around its expected value, otherwise 
the dispersion of these distributions is substantially lower. This fact leads to the 
conclusion that the inference about parameters is strong.

8 To check formally that there is no need for knowledge pooling, the distributions from full model 
and model with the lowest BF (model without type of settlement) were combined. The full model was 
taken with the weight equal to 10BF/(10BF+1)≈0.91; the second model had weight 0.09. The results given 
by pooled model were compared to the results obtained from the full model. There was no relevant 
differences.
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Figure 5.  The marginal posterior distributions – the zero model
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 Figure 6.  The marginal posterior distributions – the count model
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The (pseudo) random sample obtained from the a posteriori distribution (final 
cycles) was used to determine the basic characteristics of the marginal distributions, 
such as the a posteriori expected value and a posteriori standard deviation. The 
results, presented in Table 3, are coherent with results obtained from the Bayesian 
model comparison: the type of settlement seems to be the least important in the 
analysis, while the strongest impact was marital status. 

 Table 3.  The posterior expected values and standard deviations

Zero model Count model – Poisson

Variable Parameter E(γY) d(γY) Parameter E(δY) d(δY)

Type of settlement γ1 0.268 0.138 δ1 –0.095 0.053

Education γ2 0.436 0.073 δ2 –0.073 0.029

Marital status γ3 –2.441 0.147 δ3 0.403 0.080

Age γ4 –0.123 0.010 δ4 0.024 0.004

Number of mother’s children γ5 –0.177 0.046 δ5 0.045 0.015

Mother’s age at respondent’s 
birth γ6 0.039 0.012 δ6 –0.010 0.005

Intercept γ7 2.254 0.427 δ7 –0.317 0.179

In case when zero belonged to HPD interval (between 2.5% and 97.5% quantiles) the value was 
marked with grey.

DAUGHTERS’ FERTILITY ACCORDING TO CHOSEN CHARACTERISTICS

To specify the impact of selected covariates on the a posteriori expected number 
of children let us choose, as an example, one respondent by setting the value of j, 
j=1,…,n  (in the studied data set n = 2896). For this purpose, let the respondent be 
a typical woman in the analyzed sample with the following characteristics: a woman 
living in the urban area with upper secondary education, who is or was married, has 
one sibling and her mother was 23 at the respondent’s birth. Let x be a covariate 
vector representing features of this respondent, so x = (1, 3, 1, age, 1, 23,1). The 
age of the woman will be set as 25 and 45 to allow the comparison of a young 
woman who could just set the family and a woman who is almost at the end of her 
reproductive age.

Let’s have a look at covariates representing fertility patterns developed in the 
origin- family home. The first covariate, number of siblings, showed an important 
effect on a woman’s procreative behavior. The a posteriori expected value of the 
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parameter γ5 is negative (–0.177) and positive for δ5 (0.045). Therefore, we could 
say that the more siblings a woman has, the bigger family she will set. The posterior 
probabilities of a particular number of children due to the different numbers of 
siblings are shown in Figure 7. To make the figure more clear, only three different 
numbers of siblings (0, 2 and 4 siblings) and only numbers of children less than or 
equal to 3 are presented. The upper plot is for a 25-year-old woman, while the lower 
one is for a woman who is 45. Both plots are for a typical woman – all covariates 
are set except for the number of siblings: x = (1, 3, 1, 25/45, number of siblings, 
23,1). In this, as in other figures of this type (so-called box-whiskers plot, Figures 
7 and 8), a thick black line is the posterior median, rectangular boxes represent the 
interval set by the first and third quartile (25% and 75%), and whiskers cover the 
2.5% and 97.5% quantile interval. The highest posterior probability for a 45-year-
old woman who has siblings is for two children, while a woman who grew up as an 
only child would probably have one child. Additionally, it could be said that women 
with siblings decide to have a child at a younger age than women with no siblings: 
a 25-year-old woman is less probable to be still childlessness when she has siblings 
than when she is an only child. 

The second fertility pattern covariate, mother’s age at respondent’s birth also 
significantly determines the number of a woman’s children. Posterior probabilities 
for number of children due to mother’s age at respondent’s birth are presented in 
Figure 8. We can see that the older the mother was at the respondent’s birth, the 
lower posterior probability that the daughter will have many children. A 25-year-
old woman, whose mother was 45 at her birth, would probably be childless, while 
a woman of the same age whose mother was young (18 years old) at the woman’s 
birth would already have one child. Finally, for a woman of age 45, the most 
probable number of children if her mother was 18 at her birth is two children, and 
if her mother was older at her birth, one child.

To summarize, the impact of both covariates number of siblings and mother’s age 
at respondent’s birth on the daughter’s number of children ever born, reveal that her 
mother’s fertility pattern affects a woman’s procreative behavior. 

Selected control variables generally appeared to be important for women’s 
family models. The first control covariate – type of settlement has a slight impact on 
childlessness, but simultaneously no impact on parenthood was revealed. Education 
of a woman has a significant influence on both childlessness and parenthood: the 
more educated a woman is, the higher posterior probability of her childlessness and 
lower probability of having many children. The next covariate is marital status, 
which turned out to be very important in the analyzed population, its impact on 
number of children ever born is the strongest among all other covariates. Therefore, 
it could be said that marital status in Austria still strongly determines procreative 
behaviors. 
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Figure 7.  The posterior probabilities of particular number of children for a different number of 
siblings
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F igure 8. The posterior probabilities of particular number of children for a different mother’s age 
at respondent’s birth
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Parameters γ7 and δ7 represent intercepts in the zero and count model. The first 
one – γ7 determines the “basic” value of probability of childlessness in case the other 
covariates in the analysis occur to be unimportant. Its a posteriori expected value 
is 2.254, thus the “basic” expected probability of zero equals 0.905. The second 
one – δ7, which specifies the “basic” average number of children, turned out to be 
insignificant. 



27

Transmission of Fertility Pattern in Mother-Daughter Relation – Bayesian view...

PROCREATIVE BEHAVIORS BY FEMALE PROFILES

In the previous section it was demonstrated that procreative behaviors are different 
due to social and demographic characteristics, such as age, educational level and 
marital status. What is more, this study revealed that the reproductive behaviors 
also depend on fertility patterns developed in the origin-family home. Therefore, 
determining women’s procreative behaviors due to different female profiles seems 
to be valuable for such analyses. 

To analyze the a posteriori distributions of the number of children for the 
chosen females’ profiles, the Bayesian approach was crucial. Inference about these 
distributions would be impossible within the classical approach – we would not 
be able to obtain full knowledge about the distributions of nonlinear functions of 
parameters, such as the probability of childlessness or expected number of children. 

In this study we defined five types of women. The first two profiles presented 
below are defined in order to demonstrate procreative behaviors of 35-year-old 
women with different family background:
A –  siblings profile for typical women with different number of siblings:

xA = (1, 3, 1, 35, siblings, 23, 1);
B –  mother’s age profile for typical women with different age of mother at their 

birth: xB = (1, 3, 1, 35, 1, age, 1).
The next three profiles are connected with social and demographic conditions 

and are presented for 25, 35 and 45-year-old women:
C –  typical woman with the following characteristics (which occurred most often 

in studied dataset): living in urban area, with upper secondary education, 
married, has one brother or sister and her mother was 23 at the woman’s birth, 
xC = (1, 3, 1, age, 1, 23, 1);

D –  single educated woman, so a respondent with characteristics as follows: 
living in urban area, with second stage of tertiary education, she has never 
been married, has no siblings and her mother was 28 at the woman’s birth, 
xD = (1, 6, 0, age, 0, 28, 1); 

E –  married educated woman – a respondent with characteristics like single edu-
cated woman, but married, xE = (1, 6, 1, age, 0, 28, 1).

The differences in fertility patterns of types C and E are mainly due to the level 
of education, while types D and E are chosen to emphasize the strong impact of 
marital status on the a posteriori expected number of children. 

The posterior distributions of expected number of children for A and B female 
profiles are presented in Figure 9. The differences between women with other family 
background are visible and important. The posterior distribution of expected number 
of children due to number of siblings is presented in the upper plot in Figure 9. The 
following conclusion could be made: when a woman grew up in a big family, with 
many siblings, it is much more probable that she will follow the same pattern in 
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her own family and decide to have more children, than a woman who grew up as 
an only child. A 35-year-old typical woman with 4 siblings would probably have 
2 children (the a posteriori expected value is 2.014), while among women with no 
siblings one in three would have only one child (the a posteriori expected value 
is 1.699).  

Additionally, mother’s age at respondent’s birth seems to have an important 
influence on a woman’s procreative behaviors. The posterior distribution of expected 
number of children is presented in the lower plot in Figure 9. We can see that when 
a mother gave birth to a daughter at an older age, then the daughter will probably 
have fewer children. The a posteriori expected number of children for a 35-year-
old typical woman, whose mother was 18 at her birth, is 1.783, and 1.316 for those 
whose mother was 45. This connection between daughters and mothers could be 
explained as follows: daughters compare their procreative behaviors with fertility 
patterns from their origin-family home, so when a mother gave birth to a daughter 
at her young age, then the daughter would earlier set her own family, so it is more 
probable that she will have more children. 

Then, according to the next three profiles, the posterior distributions of the 
expected number of children are shown in Figure 10. Let’s start from type C. The a 
posteriori expected number of children for a 25-year-old typical woman is equal to 
1.261. In other words, among 25-year-old typical women, approximately one in four 
women have two children, while the other three have one child. For older women the 
proportion is changing. For a 35-year-old typical woman, the a posteriori expected 
number of children is equal to 1.777, and for a 45-year-old woman it reaches 2.228. 
It can be explained as follows: among 35-year-old women of type C, 75% already 
have two children, and 25% have one child. Finally, among the 45-year-old female 
population, three in four typical women have two children, and the other one in four 
have three children. 

The next type is single educated women with the following characteristics: never 
married, fully educated woman who lives in an urban area. The posterior distribution 
of the expected number of children is presented in the middle plot in Figure 10. It can 
be said that almost for sure a young woman of type D would not have any children, 
since the a posteriori expected number of children is 0.057 and the distribution is 
strongly concentrated around its mean. For older women the deviations are bigger, 
but distributions are still strongly separated from 1. The posterior expected number 
of children for a 35-year-old single educated woman equals 0.189 and for a 45-year-
old, 0.535. Thus, it can be said that 50% of 45-year-old women with D characteristics 
would have one child, while the other half would stay childless. Having more than 
one child is hardly probable here.
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Fi gure 9.  The posterior distributions of expected number of children for type A and B

 

Upper plot – type A

Lower plot – type B

Finally, the posterior distribution of the expected number of children for married 
educated woman is presented in the lowest plot in Figure 10 . These distributions 
compared with previous distributions for the D type (middle plot) show the strength 
of marital status. We can see that half of 25-year-old woman with E characteristics 
would already have one child (the a posteriori expected value is 0.509). A 35-year-
old married educated woman would probably have one child, while among 45-year-
old women, two in three would already have two children. 
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Figure 10.  The posterior distributions of expected number of children for type C, D and E
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CONCLUSIONS

Based on the results of the research, general conclusions about the methodological 
and cognitive side of the study might be formulated. With regard to the method of 
analysis, it should be noted that the Zero-Inflated Poisson model and Bayesian 
inference form a useful framework for analyzing transmission of fertility patterns 
developed in the origin-family home. Within this study, the model allowed us to 
investigate the effect of fertility patterns developed in the origin-family home, as 
well as other selected demographic and social variables, separately on childlessness 
and parenthood in the population of daughters. Generally in fertility analyses, the 
Zero-Inflated Poisson model seems to be particularly useful when the special research 
interests are given to the total number of children (actual or intended), because 
the ZIP model gives a different qualitative dimension (value) to childlessness and 
parenthood. Within the ZIP model it is possible to analyze one set of covariates that 
could determine childlessness and another for parenthood (e.g., we can expect that 
enlarging family is influenced by the costs of rearing the previous children, while for 
childlessness these costs do not even exist). Simultaneously, we still keep these two 
states, which could be determined by different characteristics, under the one fertility 
model – so possible dependencies between those states (one state is connected to the 
other by the probability of childlessness/parenthood) are allowed. 

In turn, the Bayesian approach enabled us to estimate the posterior distributions 
of having a certain number of children depending on the fertility pattern developed 
in origin-family home and other socio-demographic characteristics of a woman 
(distributions of expected number of children by female profiles). The uncertainty 
of the results are rather low, and the variances of the posterior distributions 
are small, so we are able to point out the differences clearly and the results are very 
precise. 

Both components of the model (zero and count) were based on the same set of 
variables that characterize the mother’s fertility pattern (number of children and 
age at respondent’s birth) and social and demographic characteristics of daughters 
were included as control variables (age, type of settlement, education and marital 
status).

This methodological approach applied to GGS data for Austria have revealed 
that family procreative behaviors among contemporary populations are affected by 
the fertility pattern of the previous generation. Regarding the number of siblings, 
the results occurred to be coherent with the previous studies: there is observed the 
positive correlation between a mother’s and a daughter’s family size. Additionally, it 
was found that mother’s age at daughter’s birth is important for a daughter’s number 
of children. The mechanism of the mother-daughter fertility pattern transmission 
could be explained as follow. Women compare her own family model with the 
pattern developed in the origin-family home. The origin-family pattern is likely to 
be treated as proper or safe (because it is known) and that is why it is likely to be 
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repeated. Therefore, those females who grew up with siblings tend to have more 
children than women who grew up as an only child. The similar could be said about 
the age at childbearing. Women compare their family calendar with that of their 
mothers and when their mothers set families at young ages, they tend to adopt that 
pattern and, when possible (e.g., have partner, proper life conditions), set up own 
families sooner and consequently are more likely to have more children. 

The following conclusions could be formulated:
1)  Women adopt the fertility pattern developed in their family home. Among 

the Austrian female population the rule is as follows: having more siblings 
and a younger mother at one’s own birth contribute to setting a bigger family 
oneself. 

2)  The origin-family pattern has strong influence on both the probability of 
being childless and the average number of children. Growing up as an only 
child increases the chance of childlessness by 16.2% as compared to having 
only one sibling, while within parenthood it decreases the average number of 
children by 4.6%. Having a k-years older mother (as compared to (k+1)-years 
older mother) decreases the chance of being childless by 3.8% and increases 
the average number of children by 1.0%.    

3)  Treating zero as a different state allows us to find that childlessness (in con-
trast to parenthood) is also influenced by the type of settlement – the chance 
of being childless is higher by 30.7 % in urban than in rural areas. 
Special attention should be given to the constructed female profiles, which were 

called: siblings profile, mother’s age profile, typical woman, single educated woman 
and married educated woman. The first two profiles (siblings and mother’s age) were 
created to show differences in procreative behaviors among women with other family 
backgrounds. Thus, women who grew up as an only child and whose mothers were 
45 at their birth, will probably have only one child, while women with 4 siblings 
and an 18-year-old mother at their birth, two children. The last three profiles present 
differences in procreative behaviors due to socio-demographic characteristics. In 
this domain the conclusions are as follows: typical women in Austria up to age 45 
would already have two, sometimes three children. A woman representing the second 
profile (single educated woman) would stay childless or decide to have only one 
child. The third group of women (married educated woman) would probably have 
one child or two children. 
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ABSTRACT

The connection between fertility of parents and their children has been 
investigated many times over the past century. It seems to be insignificant among 
pre-transitional populations, but becomes more important over time, especially in 
developed countries. Following Pearson’s example, it was widely adopted to use 
simple correlation analyses in such studies. In this study we will present how to 
use more advanced statistical models and methods to determine the occurrence and 
strength of examined relationships. Thus, we aim to investigate the intergenerational 
transmission of fertility in contemporary populations (in the case of the mother-
daughter relation in Austria) using the zero-inflated Poisson regression model. Using 
this model in fertility analysis allows us to treat childlessness as a qualitatively 
different state with possibly different determinants than parenthood (regardless of the 
number of children). Bayesian inference in this study enables us to obtain covariates’ 
distributions as well as distributions of covariates’ nonlinear functions (including 
their uncertainty) and allows us to incorporate our prior knowledge.

Keywords: fertility patterns , intergenerational transmission of fertility, Zero-
Inflated Poisson, fertility modeling, Bayesian inference, fertility in Austria


