Antibiotic resistance of canine Staphylococcus intermedius group (SIG) – practical implications

D. Chrobak, M. Kizerwetter-Świda, M. Rzewuska, M. Binek

Division of Bacteriology and Molecular Biology, Department of Pre-Clinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland

Abstract

A total of 221 SIG strains were isolated from clinical samples of canine origin submitted to the Diagnostic Laboratory of the Division of Bacteriology and Molecular Biology at the Warsaw University of Life Sciences in Warsaw during the period 2006-2010. The aim of the study was to investigate the frequency of prevalence of methicillin-resistant SIG strains and to determine the MIC values of cephalotin, amoxicillin/clavulanic acid, ciprofloxacin, clindamycin, gentamicin, chloramphenicol, mupirocin for a collection of randomly selected 79 strains belonging to Staphylococcus intermedius group (SIG), including 23 mecA-positive and 56 mecA-negative strains. All isolates were identified as belonging to SIG based on their phenotypic properties and PCR amplification of Staphylococcus intermedius-specific fragment of the 16S rRNA gene. The mecA gene was detected in 26 (12%) of 221 SIG strains. All tested mecA-negative SIG strains were susceptible to amoxicillin/clavulanic acid and cephalotin. One of the 56 mecA-negative SIG strains was resistant to ciprofloxacin, six (11%) to gentamicin. It was found that sixteen (29%) of 56 mecA-negative SIG strains were resistant to clindamycin. Most of the mecA-positive SIG strains were resistant to ciprofloxacin (96%), clindamycin (96%), and gentamicin (96%). Only one MRSIG strain was resistant to chloramphenicol. All examined mecA-positive SIG strains were found to be susceptible to mupirocin. Our results imply that staphylococcal multidrug resistance has become more prevalent, which could lead to difficulties in effective treatment. With some resistant strains the only therapeutic possibility are antimicrobial agents important in human medicine. New regulations for veterinary medicine concerning appropriate therapy of infections caused by multidrug-resistat staphylococci are needed.

Key words: Staphylococcus intermedius group, MIC, mecA gene, antibiotic resistance, dogs

Introduction

Staphylococcus intermedius was first described as a new coagulase-positive species in 1976 (Hajek 1976). It is a member of the normal flora of dogs and also a major opportunistic pathogen responsible for common canine skin infections. S. intermedius has also been found in a wide range of other animals and can occasionally cause severe infections in humans (Mahoudeau et al. 1997, Tanner et al. 2000, Bes et al. 2002, Futagawa-Saito et al. 2004). During the past few years, there has been confusion about the identifica-
tion of this species. Using a multilocus sequencing approach, independent research groups have demonstrated that isolates phenotypically identified as *Staphylococcus intermedius* consist of three distinct species, including *S. intermedius*, *S. pseudintermedius*, and *S. delphini*, which together represent the *S. intermedius* group (SIG) (Bannoehr et al. 2007, Devriese et al. 2008, Bannoehr et al. 2009). Importantly, it was discovered that *S. pseudintermedius*, but not *S. intermedius*, is the common etiological agent of canine pyoderma and that *S. delphini*, isolated from a variety of different animals, may be more clinically important than was previously thought (Bannoehr et al. 2007, Devriese et al. 2008, Bannoehr et al. 2009). However, there is no “gold standard” to differentiate phenotypically among SIG strains.

The most common causes of antimicrobial treatment in dogs are skin and wound infections, otitis externa, respiratory and urinary tract infections. Some canine infections (e.g., deep skin pyoderma and some forms of otitis externa) often require repeated and prolonged antimicrobial treatment. Difficult cases are often treated with fluoroquinolones and can involve continuous therapy for periods as long as 7 months (Carlotti et al. 1999, Guardabassi et al. 2004). There is some opinion that resistance patterns of SIG are quite predictable and in contrast to well known multidrug-resistant MRSA (mupirocin for a collection of randomly selected 79 SIG isolates from dogs, cats and humans (Hanselman et al. 2007, Sasaki et al. 2007, Wettstein et al. 2008). As in MRSA, the methicillin resistance of *S. pseudintermedius* is mediated by the mecA gene. Strains isolated from clinical samples, especially with history of previous antibiotic treatment are very often multiresistant. It is well documented for many organisms, including SIG strains, that the clinical use of antimicrobial drugs selects for resistant bacteria (Prescott et al. 2002, Guardabassi et al. 2004, Loeffler et al. 2007). In 2006, a sudden rise in isolation of methicillin-resistant SIG (MRSIG) from clinical specimens of animal origin was noted (Ruscher et al. 2009).

There have been many studies on the in vitro effect of antimicrobial agents against SIG strains isolated from dogs in countries outside Poland. However, few studies of the antimicrobial susceptibility patterns of these isolates from dogs in Poland have been reported (Hauschild and Wójcik 2007, Kizerwetter-Świda et al. 2009).

The present study was designed to assess the prevalence of methicillin resistance among SIG strains of canine origin and to determine the MIC values of cephalotin, amoxicillin/clavulanic acid, ciprofloxacin, clindamycin, gentamicin, chloramphenicol and mupirocin for a collection of randomly selected 79 SIG strains, including MRSIG, isolated from dogs.

Materials and Methods

Isolation and identification of SIG strains.

A total of 221 SIG strains were isolated from the canine clinical samples submitted to the Diagnostic Laboratory of the Division of Bacteriology and Molecular Biology at the Warsaw University of Life Sciences in Warsaw during the period 2006-2010. Minimum inhibitory concentrations (MICs) of selected antimicrobials which are quantitatively most used in animals were determined for a subset of randomly selected 79 SIG strains (Table 1). The bacteria were cultured on Columbia agar supplemented with 5% sheep blood (bioMerieux) in aerobic conditions. Identification of isolated strains was based on their phenotypic characteristics, using standard bacteriological procedures described by Malicki and Binek (2004). The following tests were used: colony pigment, type of hemolysis, coagulase, clumping factor and acid production from maltose. Biochemical activities of the isolates were examined using API Staph test (bioMerieux). Additionally, the PCR assay based on the amplification of 16S rRNA gene of *S. intermedius* was used for confirmation of identification of SIG strains (Wakita et al. 2002). *Staphylococcus intermedius* ATCC 29663 and methicillin-resistant *Staphylococcus aureus* MIRBANK 14.002 were used as the control form PCR and determination of MICs.

Table 1. Origin of 79 randomly selected SIG isolates used in the study.

<table>
<thead>
<tr>
<th>Clinical sample</th>
<th>Number of isolates</th>
<th>Total number of isolates used in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>External auditory canal swab</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Skin swab</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Conjunctival swab</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nasal cavity swab</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pharyngeal swab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vaginal swab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pseudojoint swab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prostatic gland swab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Femoral canal swab</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Breakpoints of studied antimicrobials used for evaluation of MIC values.

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Breakpoint values</th>
<th>Recommendations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin/clavulanic acid (XL)</td>
<td>≥8</td>
<td>CLSI</td>
<td>Human data</td>
</tr>
<tr>
<td>Cephalotin (CE)</td>
<td>≥32</td>
<td>CLSI</td>
<td>Human data</td>
</tr>
<tr>
<td>Clindamycin (CM)</td>
<td>≥4</td>
<td>CLSI</td>
<td>Veterinary data</td>
</tr>
<tr>
<td>Gentamicin (GM)</td>
<td>≥8</td>
<td>CLSI</td>
<td>Human data</td>
</tr>
<tr>
<td>Ciprofloxacin (CI)</td>
<td>>1</td>
<td>EUCAST</td>
<td>Human data</td>
</tr>
<tr>
<td>Chloramphenicol (CL)</td>
<td>>8</td>
<td>EUCAST</td>
<td>Human data</td>
</tr>
<tr>
<td>Mupirocin (MU)</td>
<td>≥4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The CLSI/EUCAST have no interpretive criteria for mupirocin; the mupirocin interpretive criteria were based on published reports (Finlay et al. 1997, Oliveira et al. 2007).

Detection of mecA gene. All 221 strains were tested for the presence of mecA by PCR. DNA for amplification was extracted from single colonies with Genomic Mini kits (A&A Biotechnology) using lysis buffer (100 μg/ml, Sigma). A pair of primers mecA1 5’-AAAATCGATGGTAAAGGTTGGC-3’ and mecA2 5’-AGTTCTGCAGTACCGGATTTGC-3’, described by Strommenger et al. (2003) were used to amplify a mecA gene fragment of 532 bp in size. Amplification reactions were performed in a volume of 50 μl, all reagents were purchased from Fermentas. The presence of PCR products was analyzed by electrophoresis in 1% agarose gel stained with ethidium bromide using a VersaDoc Model 1000 Imaging System with Quantity One 4.4.0 software (BioRad).

Determination of MICs. E-test® strips (bioMerieux) were used for determining the minimum inhibitory concentration (MIC) of ciprofloxacin (CI), clindamycin (CM), gentamicin (GM) for all 79 strains, and additionally cephalotin (CE), amoxicillin/clavulanic acid (XL) for 56 mecA-negative SIG strains, and chloramphenicol (CL), mupirocin (MU) for 23 mecA-positive SIG strains. Breakpoints of studied antimicrobial agents provided by the CLSI and EUCAST were used for evaluation of MIC values (Table 2).

Results

All 221 isolates were identified as SIG strains based on their phenotypic properties and PCR amplification of the S. intermedius-specific fragment of the 16S rRNA gene. As it has been shown that 16S rRNA gene sequences from the three SIG species are 99% identical, our isolates could be characterized only as belonging to the SIG. Detailed identification to the species level requires additional molecular biology based techniques, which are in progress. Analysis of biochemical properties by numerical API Staph codes revealed in some cases identification of Staphylococcus intermedius. But some codes were not included in product database, thus some strains were not identified to the species level. The mecA gene was identified in 26 (12%) out of 221 SIG strains. MIC values of selected antimicrobials were determined for a subset of randomly selected 79 SIG strains – 56 mecA-negative, and 23 mecA-positive. Table 3 shows that all 56 mecA-negative SIG strains (MSSIG) were susceptible to amoxicillin/clavulanic acid and cephalotin. One of the 56 mecA-negative SIG strains (MSSIG) was resistant to ciprofloxacin, six (11%) to gentamicin. It was found that sixteen (29%) of 56 mecA-negative SIG strains were resistant to clindamycin (Table 3).

Most of the mecA-positive SIG strains were resistant to ciprofloxacin (96%), clindamycin (96%), and gentamicin (96%). Only one MSSIG strain was resistant to chloramphenicol. All examined mecA-positive SIG strains were found to be susceptible to mupirocin (Table 4).

Discussion

In recent years, antimicrobial resistance in bacteria of animal origin, including food-producing and household pets has gained particular attention. Staphylococci isolated from animals are regarded as relatively sensitive to antimicrobial agents. However, the latest findings from antimicrobial susceptibility testing revealed a remarkable increase in prevalence of methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010). Occurrence of mecA genes in canine staphylococci varies in different countries. We have identified 12% of examined strains as methicillin-resistant staphylococci isolated from animals (Malayeri et al. 2010).
patterns of *S. intermedius*. We found that 29% of strains were resistant to clindamycin. Similar resistance levels of *S. intermedius* to this drug were observed by other authors, 39% (Lyskova et al. 2007), 22% (Hartmann et al. 2005), 15% (Oliveira et al. 2008) and 9.64% (Vanni et al. 2009). In contrast, findings from 1995 demonstrated very effective activity of clindamycin against staphylococci (Dowling 1995). Interestingly, a similar study of *S. intermedius* isolated in Poland revealed that 31.57% of them were resistant to clindamycin (Hauschild and Wójcik 2007). None of these strains was resistant to gentamicin in contrast to our strains, 10% of which showed resistance to this antibiotic. This may be correlated with the excessive topical use of veterinary products containing gentamicin. In general, *S. intermedius* isolated from dogs are characterized by some authors to be fully susceptible to gentamicin in contrast to our strains, 10% of which showed resistance to this antibiotic. Effective activity of amoxicillin with clavulanic acid and cephalotin against these strains was observed. On the other hand, there is high resistance level to penicillin G and tetracycline (Hartmann et al. 2005, Lyskova et al. 2007, Vanni et al. 2009, Malayeri et al. 2010).

It is well known that increasing resistance to antimicrobials is associated with the extensive use of these drugs in veterinary practice. This may be an explanation for the increase in the prevalence of methicillin-resistant staphylococci isolated from animals. As expected, resistance is especially high among these strains, which is correlated with the characteristics of the *mecA* gene and staphylococcal cassette chromosome *mec* (*SCCmec*). *MecA*-positive SIG strains of animal origin are multidrug-resistant, similarly to MRSA. They are resistant to β-lactams, aminoglycosides, macrolides and fluoroquinolones. Our results confirm multidrug resistance of *mecA*-positive SIG strains. We have found high resistance levels to clindamycin, ciprofloxacin and gentamicin. Only one of
23 of the examined strains was resistant to chloramphenicol and all were susceptible to mupirocin. This is in agreement with observations of other authors (Loeffer et al. 2007, Sasaki et al. 2007, Epstin et al. 2009, Ruscher et al. 2009).

Antimicrobials used in veterinary dermatology include: amoxicillin with clavulanic acid, cephalosporins, fluoroquinolones and lincomamides. Empirical therapy may be successful in infections caused by methicillin-sensitive staphylococci. However, in the case of multidrug-resistant mecA-positive strains practitioners cannot obtain a full resolution in empirical therapy. Thus, bacterial culture and antimicrobial susceptibility testing is strongly recommended, especially in refractory cases.

In general methicillin-resistant staphylococci of canine origin are sensitive to mupirocin, rifampicin, linezolid and vancomycin, which are important in human medicine for treatment of MRSA infections or represent “ antimicrobial agents of last resort” (Perreten et al. 2010). Treatment of any infections caused by mecA-positive SIG strains may be a challenge. Antimicrobial therapy must be based on the result of reliable resistance testing. There is only a limited number of drugs which may be used. One of the effective antimicrobials active against Gram-positive bacteria, including methicillin-resistant staphylococci, is mupirocin, occasionally used topically in veterinary medicine to treat canine pyoderma. Mupirocin is available as a veterinary ointment in the US, and can be prescribed at any pharmacy in other countries. Fulham et al. (2010) described a high level of in vitro sensitivity of methicillin-resistant staphylococci of canine origin to mupirocin. As far as the authors are aware, the first case of infection after joint prothesis implantation in a dog caused by MRSP in Poland involves only one strain. This strain showed in vitro susceptibility to mupirocin, linezolid, chloramphenicol and vancomycin. Infection was successfully treated using linezolid (Międzobrodzki et al. 2010).

Based on the results of our study it can be stated that the majority of canine infections caused by staphylococci may be successfully treated using amoxicillin with clavulanic acid or cephalothin. However, the increase in the occurrence of mecA-positive strains belonging to SIG is significant. In these cases empirical therapy will not be effective, and therefore antibiotic sensitivity testing is recommended. Veterinary personnel and pet owners may become colonized by MRSP, and therefore staff working in veterinary clinics should be made aware of the risk of nosocomial transmission of MRSP. New guidelines concerning antimicrobial therapy of multidrug-resistant staphylococci in veterinary medicine should be produced. Antimicrobial agents should be used only when necessary, after antimicrobial sensitivity testing, with correct dosage and administration. Prophylactic use of antimicrobials should be avoided. Moreover, there is a need for rigorous hygiene protocols to prevent transfer of MRSP in veterinary settings.

References

