www.czasopisma.pan.pl

vol. 33, no. 1, pp. 35–39, 2012 ري 🕅

doi: 10.2478/v10183-012-0001-8

First record of *Vulgarogamasus immanis* (Acari, Mesostigmata) in Svalbard

Dariusz J. GWIAZDOWICZ¹, Torstein SOLHØY², Stephen J. COULSON³, Natalia V. LEBEDEVA⁴ and Elena N. MELEKHINA⁵

¹ Uniwersytet Przyrodniczy w Poznaniu, Zakład Ochrony Lasu, ul. Wojska Polskiego 71c, 60-625 Poznań, Poland <e-mail: dagwiazd@up.poznan.pl>

² Department of Biology, University of Bergen, Box 7800, 5200 Bergen, Norway

³ University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway
⁴ Russian Academy of Sciences, Southern Scientific Center,

Chekhov str., 344006 Rostov on Don, Russia ⁵Russian Academy of Science, Institute of Biology, Komi Science Center, Kommunisticheskaya str., 28, 167928 Syktyvkar, Russia

Abstract: The mesostigmatid mite *Vulgarogamasus immanis* (Berlese, 1904) is reported in Svalbard for the first time. The gamasid mite community of Svalbard is amongst the best known of invertebrate groups of the archipelago due to recent revisions based on fresh sampling campaigns. Nonetheless, a hitherto unrecorded species of gamasid mite was recently found along the strandline in Barentsburg. This record brings the total gamasid mite inventory of Svalbard to 23 species. The current inventory of Svalbard is bedeviled with synonyms and misidentifications. Nevertheless, resolving these confusions and maintaining an accurate and updated species inventory is of prime importance in understanding the ecology of this region. Especially in a period of rapid environmental change.

Key words: Arctic, Spitsbergen, Barentsburg, mite, Gamasida.

Introduction

Svalbard lies in the high Arctic between latitudes 74° N and 81° N and longitudes 10° E and 35° E, some 700 km north of the Norwegian mainland. The archipelago has a land area of some 63,000 km², of which 60% is under permanent ice and snow (Hisdal 1985). Despite its high Arctic location, the microarthropod fauna of the archipelago includes over 500 species names. This inventory is under constant revision to provide a baseline for a detailed understanding of the Arctic soil ecosystem and the detection of environmental change for which Svalbard is becoming a field laboratory (Ministry of Justice and the Police 2009). In a review

Pol. Polar Res. 33 (1): 35-39, 2012

POLSKA AKADEMIA NAK

Dariusz J. Gwiazdowicz et al.

of the gamasid mite fauna of Svalbard, Ávila-Jiménez et al. (2011) identified a total of 22 species of gamasid mites from Svalbard. This checklist was based on identifications presented in recent discussions on the gamasid mite fauna of the archipelago by Krumpál et al. (1991), Byzova et al. (1995), Makarova (2000), Coulson et al. (2009), Gwiazdowicz and Rakowski (2009), Gwiazdowicz et al. (2009), Gwiazdowicz and Coulson (2010, 2011), Makarova (2011) and Lindquist and Makarova (2011), along with a thorough search through many extracted soil samples, taken from 18 localities spanning the entire north-south axis of Spitsbergen, the main island of the Svalbard group. Despite this effort, V. immanis was overlooked. This is especially unexpected as the species belongs to the largest gamasid mites, easily observable with the naked eye. Additionally the individuals were collected on the beach close to Russian town of Barentsburg and the now dismantled Spitsbergen Radio station at Green Harbour (today Finneset). Both settlements were established between 1911 and 1920 (Arlov 2003; Kristiansen 2005), early in the recent industrial history of Svalbard, and are hence amongst the historically most commonly visited localities by researchers in Svalbard, for example Thor (1930) and the Russian biologists working from the research stations in Barentsburg.

Material and methods

Material consisted of four specimens collected by hand searching from under stones on the beach immediately south of the Russian mining settlement of Barentsburg in Svalbard on 19 and 20 August 2011 (78° 02' 6.6'' N, 014° 12' 9.8'' E). Mites were found preferentially on damp silty sediment under stones around a drying pond behind the strandline where they were collected by pooter (aspirator). Animals were immediately preserved in 96% alcohol. For identification specimens were mounted in permanent slides (using Hoyer's medium). The pictures were prepared using a ZEISS AXIOSKOP 2 microscope with AxioCam MRc.

The material is deposited at the Department of Arctic Biology, University Centre in Svalbard (UNIS) and the University of Life Sciences, Department of Forest Protection, Poznań, Poland.

Results and remarks

Morphology of *Vulgarogamasus immanis* (Berlese, 1904) is presented below. The paucity of records of this species is extraordinary considering the size of the species, *e.g.* idiosoma of females is $2500-2700 \mu m \log (Hyatt 1980)$. Specimens from Svalbard were smaller. The length of the idiosoma of females ranging from 2290 to 2310 μm and the width of the idiosoma ranging from 1350 to 1400 μm .

36

Female (N = 2) (Fig. 1). — Two shields are located on the dorsal side: podonotal shield (1250–1350 × 1150–1200 μ m) and an opisthonotal shield (850–900 × 950–970 μ m). The podonotal shield with 23 pairs of simple setae (about 100 μ m), but seta r3 (250 μ m) is longer. The opisthonotal shield has 22 pairs of simple setae (100–120 μ m). The shields are covered with reticulate sculpture.

Tritosternum with a base 70 μ m long and laciniae with a length of 240 μ m are located on the ventral side above the sternal shield. Three pairs of setae (130 μ m) are located on the sternal shield (550 μ m long). Genital shield is triangular (480–500 × 490–500 μ m). The peritreme (900 μ m) does not reach coxa I.

Legs variable in length: I (2600 µm), II (1900 µm), III (1750 µm), IV (2200 µm).

Fig. 1. Vulgarogamasus immanis (Berlese, 1904) - female, sternal and genital shields.

Male (N = 1) (Fig. 2). — Idiosoma is 1950 μ m long and 1100 μ m wide. On the dorsal side there is the podonotal shield (1100 × 1100 μ m) with 25 pairs of simple setae and the opisthonotal shield (900 × 1100 μ m) with 48 pairs and 9 unpaired setae. Dorsal setae are long (140–150 μ m), but r3 is longer (280 μ m). The entire venter is very strongly sclerotized and finely reticulated. The setae are slender and simple (150 μ m).

POLSKA ARADEMIA NAUK

Dariusz J. Gwiazdowicz et al.

Fig. 2. Vulgarogamasus immanis (Berlese, 1904) - male.

Legs variable in length: I (2250 µm), II (1650 µm), III (1500 µm), IV (2200 µm).

Deutonymph (N = 1). — Idiosoma is 2150 µm long and 1200 µm wide. Two shields are located on the dorsal side: podonotal shield (810×740 µm) and an opisthonotal shield (520×600 µm). The podonotal shield with 16 pairs of simple setae (100-120 µm), but seta r3 (240 µm) is longer. The opisthonotal shield has 13 pairs of simple setae (120-130 µm). The shields are covered with reticulate sculpture.

Tritosternum with a base 70 μ m long and laciniae with a length of 150 μ m are located on the ventral side above the sternal shield. 3 pairs of setae (70 μ m) are located on the sternal shield (550×250 μ m). The anal shield (150×160 μ m) with two para-anal setae (50 μ m) and one postanal seta (65 μ m). The peritreme (700 μ m) does not reach coxa I.

Legs variable in length: I (1950 µm), II (1400 µm), III (1350 µm), IV (1850 µm).

The species was described by Berlese (1904) who examined two specimens from Ireland sent to him by Halbert. *V. immanis* has a palaeoarctic distribution, being recorded from Iceland, Norway, UK and Russia but not previously at such high latitudes. The material collected at Barentsburg comes from a typical habitat for this species, under decaying seaweed and under stones (Tichomirov 1977; Hyatt 1980; Karg 1993). Our record of *V. immanis* highlights that further study of the invertebrate biogeography of the high Arctic archipelago is required, with a special focus on taxa previously neglected.

Acknowledgements. — Fieldwork was supported by AVIFauna project, Norwegian Research Council project number (6172/S30). Thanks are extended to the two reviewers who contributed to improving the manuscript.

38

www.czasopisma.pan.pl

References

ARLOV T.B. 2003. Svalbards Historie. Tapir Academic Press, Trondheim, Norway: 499 pp.

- ÁVILA-JIMÉNEZ M.L., GWIAZDOWICZ D.J. and COULSON S.J. 2011. On the gamasid (Acari: Parasitiformes) mite fauna of Svalbard: a revised checklist of a high Arctic archipelago. Zootaxa 3091: 33–41.
- BERLESE A. 1904. Acari nuovi. Manipulus I. Redia 1: 235-252.
- BYZOVA J.B., UVAROV A.V. and PETROVA A.D. 1995. Seasonal changes in communities of soil invertebrates in tundra ecosystems of Hornsund, Spitsbergen. *Polish Polar Research* 16: 245–266.
- COULSON S.J., MONSON F., MOE B. and GABRIELSEN G.W. 2009. The invertebrate fauna of High Arctic seabird nests: the microarthropod community inhabiting nests on Spitsbergen, Svalbard. *Polar Biology* 32: 1041–1046.
- GWIAZDOWICZ D.J. and COULSON S.J. 2010. Phoresis of the deutonymphs of *Thinoseius spinosus* (Acari, Eviphididae) on the calliphorid dipteran *Protophormia terraenovae* on the High Arctic island of Spitsbergen (Svalbard) including a key to deutonymphs of *Thinoseius. International Journal of Acarology* 36: 233–236.
- GWIAZDOWICZ D.J. and COULSON S.J. 2011. High Arctic gamasid mites (Acari, Mesostigmata); community composition on Spitsbergen, Svalbard. *Polar Research* 30: 1–7.
- GWIAZDOWICZ D.J. and RAKOWSKI R. 2009. Redescription of *Proctolaelaps parvanalis* (Thor, 1930) (Acari: Ascidae) from Spitsbergen. *Entomologica Fennica* 20: 281–286.
- GWIAZDOWICZ D.J., COULSON S.J. and ÁVILA-JIMÉNEZ M.L. 2009. First records of Zercon andrei Sellnick, 1958 and Zerconopsis muestairi (Schweizer, 1949) (Acari, Mesostigmata) from Bjørnøya. Norwegian Journal of Entomology 56: 117–119.
- HISDAL V. 1985. Geography of Svalbard. Norwegian Polar Institute, Oslo: 83 pp.
- HYATT K.H. 1980. Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bulletin of the British Museum (Natural History), Zoology, 38: 237–378.
- KARG W. 1993. Acari (Acarina), Milben Parasitiformes (Anactinochaeta), Cohors Gamasina Leach. Raubmilben. Die Tierwelt Deutschlands, 59 Teil. Gustav Fischer Verlag, Jena: 523 pp.
- KRISTIANSEN V.B. 2005. Telenor mellom satellitter og fangststasjoner på Svalbard. Norsk Telemuseum. Oslo, Norway: 168 pp.
- KRUMPÁL M., CYPRICH D., ZEJDA J. and AMBROS M. 1991. The occurrence of field vole (*Microtus arvalis* Pallas 1778) and its acarofauna on Spitsbergen (Svalbard). *Biologia* 46: 881–885.
- LINDQUIST E.E. and MAKAROVA O.L. 2011. Two new circumpolar species of the mite species *Arctoseius* Thor (Parasitiformes, Mesostigmata, Ascidae). *Zoologicheskii Zhurnal* 90: 1–19.
- MAKAROVA O.L. 2000. To the study of mites of the genus Arctoseius Thor (Parasitiformes, Ascidae) from the Far North: 3. Ranges and ecological preferences of species. Entomological Review 80: 143–150.
- MAKAROVA O.L. 2011. A review of gamasid mites (Parasitiformed, Mesostigmata) in the taiga of the Pechoro-Ilychski nature reserve (Northern Cisuralia) with an analysis of their assemblages in spruce forests. *Zoologicheskii Zhurnal* 90: 649–664.
- MINISTRY OF JUSTICE AND THE POLICE 2009. Stortingsmelding No. 22, Svalbard (2008–2009), Nowegian Government Stoltenberg II, *Department Public Publications*, Oslo: 121 pp.
- THOR S. 1930. *Beiträge zur Kenntnis der Invertebraten fauna von Svalbard*. Skrifter om Svalbard og Ishavet, Oslo: 156 pp.
- TICHOMIROV S.I. 1977. Sem. Parasitidae. In: M.S. Gilarov and N.G. Bregetova (eds) Opredelitel obitayushchikh v pochve kleshchei Mesostigmata. Nauka, Leningrad: 55–107.

Received 7 December 2011 Accepted 26 January 2012