Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2021 | vol. 47 | No 1 |

Download PDF Download RIS Download Bibtex


This paper presents the results of tests performed on an installation with an aerated microelectrolytic bed (MEL-bed) and sludge sedimentation. The systems were designed in two versions, differing in the aeration method, i.e., a mechanically aerated coagulator (MAC) and an automatically aerated coagulator (AAC). The experiment demonstrated a high (approx. 84%) efficiency of phosphorus removal from a model solution for both versions. The corroding bed was the source of iron in the solution. In the initial phase aeration method affected the phosphorus removal rate, flocculation and sedimentation processes. Physical and chemical changes in the MEL-bed packing were observed.
Go to article


  1. Deng, Y., Englehardt, J.D., Abdul-Aziz, S., Bataille, T., Cueto, J., De Leon, O., Wright, M.E., Gardinali, P., Narayanan, A., Polar, J. & Tomoyuki, S. (2013). Ambient iron-mediated aeration (IMA) for water reuse, Water Research, 47, pp. 850–858, DOI: 10.1016/j.watres.2012.11.005
  2. El Samrani, A.G., Lartiges, B.S., Montarges-Pelletier, E., Kazpard, V., Barres, O. & Ghanbaja, J. (2004).Clarification of municipal sewage with ferric chloride: the nature of coagulant species, Water Research, 38, pp. 756–768, DOI: 10.1016/jwatres.2003.10.002.
  3. Gromiec, M.J. & Gromiec, T.M. (2010). Controlling of eutrophication in aquatic environments, Journal of Water and Land Development, 14, pp. 29–35.
  4. Gu, A.Z., Liu, L., Neethling, J.B., Stensel, H.D. & Murthy, S. (2011). Treatability and fate of various phosphorus fractions in different wastewater treatment processes, Water Science and Technology, 63 (4), pp. 804–810, DOI: 10.2166/wst.2011.215.
  5. Lai, B., Zhou, Y. & Yang, P. (2012). Passivation of sponge iron and GAC in Fe0/GAC mixed-potential corrosion reactor, Industrial & Engineering Chemistry Research, 51(22), pp. 7777–7785, DOI: 10.1021/ie203019t.
  6. Lakshmanan, D., Clifford, D.A. & Samanta, G. (2009). Ferrous and ferric ion generation during iron electrocoagulation, Environmental Science and Technology, 43(10), pp. 3853–3859, DOI: 10.1021/es8036669.
  7. Li, C., Ma, J., Shen, J. & Wang, P. (2009). Removal phosphate from secondary effluent with Fe2+ enhanced by H2O2 at nature pH/neutral pH, Journal of Hazardous Materials, 166, pp. 891–896, DOI: 10.1016/j.jhazmat.2008.11.111.
  8. Libecki, B. (2018) Koagulator do oczyszczania ścieków (Coagulator for wastewater treatment) Patent Application, Polish Patent Office, application No: P.426089
  9. Ma, L. & Zhang, W.-X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron, Environmental Science and Technology, 42, pp. 5384–5389, DOI: 10.1021/es801743s.
  10. Mak, M.S.H., & Irene, M.C. (2009). Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron, Water Research, 43, pp. 4296–4304, DOI: 10.1016/j.watres.2009.06.022.
  11. Qin, Sh., Li, X., Zhang, T. & Ronga, W. (2011). Pretreatment of chemical cleaning wastewater by microelectrolysis process, Procedia Environmental Sciences, 10, pp. 1154–1158, DOI: 10.1016/j.proenv.2011.09.184.
  12. Sarin, P., Snoeyink, V.L., Lytle, D.A. & Kriven, W.M. (2004). Iron corrosion scales: model for scale growth, iron release, and colored water formation, Journal of Environmental Engineering, 4, pp. 364–373.
  13. Sleiman, N., Deluchat, V., Wazne, M., Mallet, M., Courtin-Nomade, A., Kazpard, V. & Baudu, M. (2016). Phosphate removal from aqueous solution using ZVI/sand bed reactor: Behavior and mechanism, Water Research, 99, pp. 56–65, DOI: 10.1016/j.watres.2016.04.054.
  14. Smoczyński, L., Muńska, K.T., Kosobucka, M. & Pierożyński, B. (2014). Phosphorus and COD removal from chemically coagulated wastewater, Environmental Protection Engineering, 40(3), pp. 63–73.
  15. Sterner, R.W. (2008). On the Phosphorus Limitation Paradigm for Lakes, International Review of Hydrobiology, 93, 4–5, pp. 433–445, DOI: 10.1002/iroh.200811068.
  16. Sun, Y., Li, J., Huang, T. & Guan, X. (2016). The influeces of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review, Water Research, 100, pp. 277–295, DOI: 10.1016/j.watres.2016.05.031.
  17. Tarkowska-Kukuryk, M. (2013). Effect of phosphorus loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33–46, DOI:10.2478/aep-2013-0029.
  18. Wan, W., Pepping, T.J., Banerji, T., Chaudhari, S. & Giammar, D.E. (2011). Effects of water chemistry on arsenic removal from drinking water by electrocoagulation, Water Research, 45(1), pp. 384–392, DOI: 10.1016/j.watres.2010.08.016.
  19. Wei, M.-Ch., Wang, K.-S., Hsiao, T.-E., Lin, I.-Ch., Wu, H.-J., Wu, Y.-L., Liu, P.-H. & Chang, S.-H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation, Journal of Hazardous Materials, 195(15) pp. 324–331, DOI: 10.1016/j.jhazmat.2011.08.044.
  20. Yang, X., Xue, Y. & Wang, W. (2009). Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis, Bioresources Technology, 2009, 100(2), pp. 649–653, DOI: 10.1016/j.biortech.2008.07.035.
  21. Yang, Z., Ma, Y., Liu, Y., Li, Q., Zhou, Z. & Ren, Z. (2017).Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system. Chemical Engineering Journal, 315, pp. 403–414, DOI: 10.1016/j.cej.2017.01.042.
  22. Yanhe, H., Han, L., Meili, L., Yimin, S., Cunzhen, L. & Jiaqing, Ch. (2016). Purification treatment of dyes wastewater with a novel micro-electrolysis reactor, Separation and Purification Technology, 170, pp. 241–247, DOI: 10.1016/j.seppur.2016.06.058.
  23. Yuan, S., Wu, Ch., Wan, J. & Lu, X. (2009). In situ removal of copper from sediments by a galvanic cell, Journal of Environmental Management, 90, 421–427, DOI: 10.1016/j.jenvman.2007.10.009.
  24. Zou, H. & Wang, Y. (2017). Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater, Archives of Environmental Protection, 43(4), 33–38, DOI: 10.1515/aep-2017-0037.

Go to article

Authors and Affiliations

Bartosz Libecki
Tomasz Mikołajczyk

  1. Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex


Sulphonamides (SAs) are one of the most frequently detected anthropogenic micropollutants in the aquatic environment and their presence in it may pose a threat to living organisms. The aim of the study was to determine susceptibility of selected sulphonamides, i.e. sulfadiazine (SDZ) and sulfamethazine (SMZ), to degradation in the ozonation process and in enzymatic oxidation by unspecific peroxygenase extracted from Agrocybe aegerita mushroom ( AaeUPO). Moreover, the acute toxicity of the aqueous solution of the selected sulphonamides (SMZ and SDZ) before and after mentioned treatment processes were studied on the freshwater crustacean Daphnia magna. Initial concentrations were equal to 2×10-5 M for sulfadiazine and 1.8×10-5 M for sulfamethazine. The percentage of transformation for the O3 process was at the level 95% for both SDZ and SMZ (after 10 s of the process), whilst enzymatic oxidation of SDZ and SMZ by AaeUPO caused transformation efficiencies at the levels of 97% and 94% (after 1 minute of the process), respectively. The second order rate constants of selected sulfonamides with molecular ozone and fungal peroxidase were also determined in the research. EC50 (median effective concentration) values from toxicity test on D. magna were found in the range from 14.6% to 37.2%, depending on the type of the process. The conducted oxidation processes were efficient in degradation of selected sulphonamides. The toxicity of the mixtures before and after treatment was comparable and did not change significantly. The research have shown that biological processes are not always safer for living organisms compared to the chemical processes.
Go to article


Anh D.H., Ullrich R., Benndorf D., Svatos A., Muck A. & Hofrichter M. (2007). The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzesaromatic peroxygenation, Appl Environ Microbiol, 73, 17, pp. 5477-5485, DOI: 10.1128/AEM.00026-07.
Anskjær G.G., Rendal C. & Kusk K.O. (2013). Effect of pH on the toxcity and bioconcentration of sulfadiazine on Daphnia magna, Chemosphere, 91, pp. 1183-1188, DOI: 10.1016/j.chemosphere.2013.01.029.
Aracagök D., Göker H. & Cihangir N. (2018): Biodegradation of diclofenac with fungal strains, Archives of Environmental Protection, 44 (1), pp. 55–62, DOI: 10.24425/118181.
Bader H., Hoigné J. (1982). Determination of ozone by the indigo method: a submitted standard method, Ozone: Sci. Eng, 4, pp. 169-176, DOI: 10.1080/01919518208550955.
Bertanza G., Pedrazzani R., Grande M.D., Papa M., Zambarda V., Montani C., Steimberg N., Mazzoleni G., Lorenzo D.D. (2011): Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure, Water Res, 45(8), pp. 2473-2484, DOI: 10.1016/j.watres.2011.01.026.
Bílková Z., Malá J. & Hrich K. (2019). Fate and behaviour of veterinary sulphonamides under denitrifying conditions, Science of The Total Environment, 695, pp. 133824, DOI: 10.1016/j.scitotenv.2019.133824.
Bourgin M., Beck B., Boehler M., Borowska E., Fleiner J., Salhi E., Teichler R., von Gunten U., Siegrist H. & McArdell C. (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products, Water Res, 129, pp. 486-498, DOI: 10.1016/j.watres.2017.10.036.
Bourgin M., Borowska E., Helbing J., Hollender J., Kaiser H.-P., Kienle C., McArdell C.S., Simon E. & von Gunten U. (2017). Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutants abatement, transformation product and bromate formation in a surface water, Water Res, 122, pp 234–245, DOI: 10.1016/j.watres.2017.05.018.
Cruz-Moratóa C., Lucas D., Llorca M., Rodriguez-Mozaz S., Gorga M., Petrovic M., Barceló D., Vicenta T., Sarràa M. & Marco-Urrea E. (2014). Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds, Science of The Total Environment, 493, pp. 365–376, DOI: 10.1016/j.scitotenv.2014.05.117.
Dalla Bona M., Di Leva V. & De Liguoro M. (2014). The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures, Chemosphere 115, pp. 67-74, DOI: 10.1016/j.chemosphere.2014.02.003.
De Liguoroa M., Fioretto B., Poltronieri C. & Gallina G. (2009).The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim, Chemosphere, 75 (11), pp. 1519–1524, DOI: 10.1016/j.chemosphere.2009.02.002.
Fang X., Wu S., Wu Y., Yang W., Lia Y., He J., Hong P., Nie M., Xie C., Wu Z., Zang K., Kong L. & Liu J. (2020). High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms, Applied Surface Science, 518, pp. 146226, DOI: 10.1016/j.apsusc.2020.146226.
Felis E., Kalka J., Sochacki A., Kowalska K., Bajkacz S., Harnisz M. & Korzeniewska E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications, European Journal of Pharmacology, 866, pp. 172813, DOI: 10.1016/j.ejphar.2019.172813.
Fletcher S. (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance, Environ. Health Prevent. Med., 20, pp. 243–252, DOI: 10.1007/s12199-015-0468-0.
Garoma T., Umamaheshwar S. K. & Mumper A. (2010). Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation, Chemosphere, 79, pp. 814–820, DOI: 10.1016/ j.chemosphere.2010.02.060.
Hernandez A. & Ruiz M. T. (1998). An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression, Bioinformatics, 14, pp. 227-28, DOI: 10.1093/bioinformatics/14.2.227.
Hester R. E. & Harrison R. M. (2015). Pharmaceuticals in the Environment, Issues in Environmental Science and Technology. Royal Society of Chemistry Publishing, DOI: 10.1039/9781782622345.
Hofrichter M., Ullrich R., Pecyna M.J., Liers C. & Lundell T. (2010). New and classic families of secreted fungal peroxidases, Appl Microbiol Biotechol, 87, pp. 871-897, DOI: 10.1007/s00253-010-2633-0.
Huber M., Göbel A., Joss A., Hermann N., Löffler D., McArdel C.S., Siegrist H., Ried A., Ternes T.A. & von Gunten U. (2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study, Environmental Science and Technology, 39 (11), pp. 4290-4299, DOI: 10.1021/es048396s.
Kinne M., Poraj-Kobielska M., Aranda E., Ullrich R., Hammel K.E., Scheibner K. & Hofrichter M. (2009). Regioselective preparation of 5-hydroxypropranolol and 4'-hydroxydiclofenac with a fungal peroxygenase, Bioorganic & Medicinal Chemistry Letters, 9 (11), pp. 3085-7, DOI: 10.1016/j.bmcl.2009.04.015.
Kümmerer K. (2010). Pharmaceuticals in the environment, Annual Review of Environment and Resources 35, pp. 57-75, DOI: 10.1146/annurev-environ-052809-161223
Lee C.O., Howe K.J. & Thomson B.M. (2012). Ozone and biofiltration as an alternative to reverse osomosis for removing PPCPs and micropollutants from treated wastewater, Water Research, 46, pp. 1005-1014, DOI: 10.1016/j.watres.2011.11.069.
Lemańska-Malinowska N. & Bjerkelund V.A. (2014). Removal of selected sulphonamides during the ozonation process in the presence and absence of bicarbonates. The Globaqua-Cytothreat-Endetech-Scarce Workshop, Barcelona, Spain, 2014.
Lemańska-Malinowska N., Felis E. & Surmacz-Górska J. (2013). Photochemical degradation of sulfadiazine, Archives of Environmental Protection, 39 (3),pp. 79-91, DOI: 10.2478/aep-2013-0027.
Loos R., Marinov D., Sanseverino I., Napierska D. & Lettieri T. (2018). Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, Publications Office of the European Union, Luxembourg, DOI: 10.2760/614367.
Nanaboina V. & Korshin G. V. (2010). Evolution of absorbance spectra of ozonated wastewater and its relationship with the degradation of trace-level organic species. Environ Sci Technol, 44, pp. 6130-6137, DOI: 10.1021/es1005175.
OECD, 2004. Test No. 202: Daphnia sp. Acute Immobilisation Test OECD Guidelines for the Testing of Chemicals, Section 2 Effects on Biotic Systems 202.
Paździor K., Bilińska L. & Ledakowicz S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chemical Engineering Journal, 376, pp. 120597, DOI: 10.1016/j.cej.2018.12.057.
Pecyna M. J. (2010). Fungal peroxygenases and methods of application, United States, Patent publication: US 2010/0279366 A1, Pub. Date: 04.11.
Pelalak R., Alizadeh R., Ghareshabani E. & Heidari Z. (2020). Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study, Science of the Total Environment, 734, pp. 139446, DOI: 10.1016/j.scitotenv.2020.139446.
Poraj-Kobielska M., Kinne M., Ullrich R., Scheibner K., Kayser G., Hammel K.E. & Hofrichter M. (2011). Preparation of human drug metabolites using fungal peroxygenases, Biochemical Pharmacology, 82(7), pp. 789-789, DOI: 10.1016/j.bcp.2011.06.020.
Rakness K., Gordon G., Langlais B., Masschelein W., Matsumoto N., Richard Y., Robson M. & Somiya I. (1996). Guideline for measurements of ozone concentration in the process gas from an ozone generator, Ozone Sci Eng, 18, pp. 209-229, DOI: 10.1080/01919519608547327.
Reungoat J., Escher B.I., Macova M., Argaud F.X., Gerjak W. & Keller J. (2012). Ozonation and biological activated carbon filtration of wastewater treatment plant effluents, Water Research, 46, pp. 863-872, DOI: 10.1016/j.watres.2011.11.064.
Rodríguez-Rodríguez C. E., García-Galán J., Blánquez P., Díaz-Cruz M. S., Barceló D., Caminal G. & Vicent T. (2012). Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole, Journal of Hazardous Materials, 213–214, pp. 347–354, DOI: 10.1016/j.jhazmat.2012.02.008.
Santos L.M, Araújo A.N., Fachini A., Pena A., Delerue-Matos C. & Montenegro M. (2010). Ecotoxicological aspects related to the presence of pharmaceutical in the aquatic environment, Journal of Hazardous Materials, 175,pp. 45-95, DOI: 10.1016/j.jhazmat.2009.10.100.
Schwarz J., Aust M.-O. & Thiele-Bruhn S. (2010). Metabolites from fungal laccase-catalysed transformation of sulfonamides, Chemosphere, 81 (11), pp. 1469–1476, DOI: 10.1016/j.chemosphere.2010.08.053. Tahergorabi M., Esrafili A., Kermani M., Gholami M., Farzadkia M. (2019). Degradation of four antibiotics from aqueous solution by ozonation: intermediates identification and reaction pathways, Desalination and Water Treatment, 139, pp. 277-287, DOI: 10.5004/dwt.2019.23307.
Ullrich R., Nüske J., Scheibner K., Spantzel J. & Hofrichter M. (2004). Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes, Appl Environ Microbiol, 70, pp. 4575–4581, DOI: 10.1128/AEM.70.8.4575-4581.2004.
von Sonntag C. & von Gunten U. (2012). Chemistry of ozone in water and wastewater treatment: from basic principles to applications. IWA Publishing.
Voulvoulis N. (2014). The need for catchment management of pharmaceuticals: the role of STPs, The Globaqua-Cytothreat-Endetech-Scarce Workshop, Barcelona, Spain, 2014.
Yang Y., Ok Y.S., Kim K.-H., Kwon E.E. & Tsang Y.F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of The Total Environment, 596-597, pp. 303-320.
Zhang C., Wang L., Gao X. & He X. (2016): Antibiotics in WWTP discharge into the Chaobai River, Beijing, Archives of Environmental Protection, 42(4), pp. 48–57, DOI: 10.1515/aep-2016-0036.

Go to article

Authors and Affiliations

Natalia Lemańska
Ewa Felis
Marzena Poraj-Kobielska
Zuzanna Gajda-Meissner
Martin Hofrichter

  1. EkoNorm Sp. z o.o., Katowice, Poland
  2. The Silesian University of Technology, Gliwice, Poland
  3. Technische Universität Dresden, Germany
  4. School of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom
Download PDF Download RIS Download Bibtex


Improvements in water quality requires the removal of nitrogen compounds from wastewater. The most promising and cost-effective methods for this purpose are biological ones based on activated sludge microorganisms such as nitrifiers, denitrifiers, and anammox bacteria. Due to the most of the nitrogen removal bacteria are uncultivable in a laboratory, the application of the molecular tools is required to investigate microorganisms involved in the nitrogen removal. In case of this study for the analysis of relative genes abundance of nitrogen removal bacteria, quantitative PCR (qPCR) based on bacterial DNA and qPCR preceded by reverse transcription (RT-qPCR) based on bacterial mRNA as a template, were used with specific bacterial functional genes ( amoA, nrxA, nirS, nirK, hzo). Samples from four anammox sequencing batch reactors (SBRs) were analyzed, while the nitrogen removal process and bacteria growth were supported by biomass immobilization and nanoparticles addition. There were statistically significant differences between results obtained in the case of mRNA and DNA (p<0.05). Statistically significant positive correlations were found between results obtained with those two approaches. In case of mRNA analysis, positive results were obtained only for hzo, amoA and partly for nirS genes, despite additional purification and removal of inhibitors from samples prior to reaction.
Go to article


Abzazou, T., Salvadó, H., Cárdenas-Youngs, Y., Becerril-Rodríguez, A., Cebirán, E. M. C., Huguet, A. & Araujo, R. M. (2018). Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach. Sci. Total Environ. , 618, pp. 858–865, DOI: 10.1016/j.scitotenv.2017.08.241
Banach, A., Pudlo, A. & Ziembińska-Buczyńska, A. (2018). Immobilization of Anammox biomass in sodium alginate. In E3S Web of Conferences (Vol. 44, pp. 00008). EDP Sciences, DOI: 10.1051/e3sconf/20184400008
Banach-Wiśniewska, A., Ćwiertniewicz-Wojciechowska, M.& Ziembińska-Buczyńska, A. (2020a). Effect of temperature shifts and anammox biomass immobilization on sequencing batch reactor performance and bacterial genes abundance. J. Environ., 1-12, DOI: 10.1007/s13762-020-02957-w
Banach-Wiśniewska, A., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2020). Medium shift influence on nitrogen removal bacteria: Ecophysiology and anammox process performance. Chemosphere, 238, 124597, DOI: 10.1016/j.chemosphere.2019.124597
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. , 17(1), pp. 1-17, DOI: 10.1007/s10592-015-0775-4
Calli, B., Mertoglu, B., Roest, K.& Inanc, B. (2006). Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresour. Technol. , 97(4), pp. 641-647, DOI: 10.1016/j.biortech.2005.03.021
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E. & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus, Science pp. 1014-1015, DOI: 10.1126/science.1167755
Dodds, W.S. & Smith, V.H. (2016). Nitrogen, phosphorus and eutrophication in stream. Island Waters, 6:2, 155-162, DOI: 10.5268/IW-6.2.909
Ding, C., Adrian, L., Peng, Y. & He, J. (2020). 16S rRNA gene-based primer pair showed high specificity and quantification accuracy in detecting freshwater Brocadiales anammox bacteria. FEMS Microbiol. Ecol. , 96(3), DOI: 10.1093/femsec/fiaa013
Gerbl, F.W., Weidler, G. W., Wanek, W., Erhardt, A. & Stan-Lotter, H. (2014). Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Front. Microbiol. , 5, 225, DOI: 10.3389/fmicb.2014.00225
Gilbert, E. M., Agrawal, S., Schwartz, T., Horn, H. & Lackner, S. (2015). Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Res. , 81, 92-100. DOI: 10.1016/j.watres.2015.05.022
Härtig, E., & Zumft, W.G. (1999). Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system. J. Bacteriol. , 181, pp. 161–166, DOI: 10.1128/JB.181.1.161-166.1999
Jiang, R., Wang, J. G., Zhu, T., Zou, B., Wang, D. Q., Rhee, S. K. & Quan, Z. X. (2020). Use of Newly Designed Primers for Quantification of Complete Ammonia-Oxidizing (Comammox) Bacterial Clades and Strict Nitrite Oxidizers in the Genus Nitrospira. Appl. Environmen. Microbiol. , 86(20). DOI: 10.1128/AEM.01775-20
Kim, Y.M., Lee, D. S., Park, C., Park, D. & Park, J. M. (2011). Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial sludge process. Water Res. , 45, pp. 1267-1279, DOI: 10.1016/j.watres.2010.10.003
Li, X., Xiao, Y. P., Ren, W. W., Liu, Z. F., Shi, J. H. & Quan, Z. X. (2012). Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary. J Zhejiang Univ-Sci B (Biomed Biotechnol) ,13, pp. 769-782, DOI: 10.1631/jzus.B1200013
Lindeman, S., Zarnoch, C. B., Castignetti, D. & Hoellein, T. J. (2016). Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary. Estuaries and Coasts, 39(1), 218-232. DOI: 10.1007/s12237-015-9989-4
Livak, K.J. & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 23, pp. 402-408, DOI: 10.1006/meth.2001.1262
Regier, N. & Frey, B. (2010). Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar. BMC Mol. Biol. , 11(1), 57, DOI: 10.1186/1471-2199-11-57
Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J., Schleifer, K.H. & Wagner, M. (2000). Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Sys. Appl. Microbiol. , 23, 93–106, DOI: 10.1016/S0723-2020(00)80050-8
Sharma, R., Ranjan, R., Kapardar, R. K. & Grover, A. (2005). 'Unculturable' bacterial diversity: An untapped resource. Current Sci. , pp. 72-77,
Smith, C. J., McKew, B. A., Coggan, A. & Whitby, C. (2015). Primers: functional genes for nitrogen-cycling microbes in oil reservoirs. In Hydrocarbon and Lipid Microbiol. Protocols, pp. 207-241, DOI: 10.1007/8623_2015_184
Stewart, E. J. (2012). Growing unculturable bacteria. J. Bacteriol. , 194(16), pp. 4151-4160, DOI: 10.1128/JB.00345-12
Tekile A., Kim I. & Kim J. (2015). Mini-reveiw on rover eutrophication and bottom improvement techniques with special emphasis on the Nakdong River. J Environ. Sci. , 30, pp. 113-121, DOI: 10.1016/j.jes.2014.10.014
Tomaszewski, A., Cema, G., Ciesielski, S., Łukowiec, D. & Ziembińska-Buczyńska, A. (2019). Cold anammox process and reduced graphene oxide - varieties of effects during long-term interaction. Water Res. , 156, pp. 71-81, DOI: 10.1016/j.watres.2019.03.006
Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. , 16, (6), pp. 2143-2152, DOI: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
Wang, D., Wang, G., Zhang, G., Xu, X. & Yang, F. (2013). Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour. Technol. , 131, 527-530, DOI: 10.1016/j.biortech.2013.01.099
Wang, Y., Wang, H., Zhang, J., Yao, L. & Wei, Y. (2016). Deciphering the evolution of the functional genes and microbial community of the combined partial nitritation-anammox process with nitrate build-up and its in situ restoration. RSC Advances, 6(113), pp. 111702-111712, DOI: 10.1039/c6ra23865c
Wang, G., Xu, X., Zhou, L., Wang, C. & Yang, F. (2017). A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment. Bioresour. Technol. , 241, pp. 181–189, DOI: 10.1016/j.biortech.2017.02.125
Wang, Q., He, J. (2020). Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) pro-cess. FEMS Microbiol. Ecol. , 96(1), DOI: 10.1093/femsec/fiz202
Whang, L. M., Chien, I. C., Yuan, S. L. & Wu, Y. J. (2009). Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere, 75(2), pp. 234-242, DOI: 10.1016/j.chemosphere.2008.11.059
Winkler, M. K., Bassin, J. P., Kleerebezem, R., Sorokin, D. Y. & van Loosdrecht, M. C. (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiol. Biotechnol. , 94(6), pp. 1657-1666, DOI: 10.1007/s00253-012-4126-9
Yang, Y. D., Hu, Y. G., Wang, Z. M. & Zeng, Z. H. (2018). Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Sci. Pollut. , 25(14), pp. 14057-14067, DOI: 10.1007/s11356-018-1548-7
Yao, Q. & Peng, D. C. (2017). Nitrite oxidizing bacteria (NOB) dominating in nitrifying community in full-scale biological nutrient removal wastewater treatment plants. AMB Express, 7(1), 25, DOI: 10.1186/s13568-017-0328-y
Yoshida, M., Ishii, S., Fujii, D., Otsuka, S. & Senoo., (2012). Identification of Active Denitrifiers in Rice Paddy Soil by DNA- and RNA-Based Analyses. Microbes Environ., 27, 4, pp. 456–461, DOI: 10.1264/jsme2.ME12076
Zahedi, A., Greay, T. L., Paparini, A., Linge, K. L., Joll, C. A. & Ryan, U. M. (2019). Identification of eukaryotic microorganisms with 18S rRNA next-generation sequenc-ing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Res., 158, pp. 301-312, DOI: 10.1016/j.watres.2019.04.041
Zhang X., Zheng S., Xiao X., Wang L. & Yin Y. (2017) Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking. Bioresour. Technol., 226, pp. 267-271, DOI: 10.1016/j.biortech.2016.12.047
Zhang, Y., Ruan, X. & Shi, W. (2019). Changes in the nitrogen biogeochemical cycle in sediments of an urban river under different dissolved oxygen levels. Water Supply, 19(4), pp. 1271-1278, DOI: 10.2166/ws.2018.188
Ziembińska-Buczyńska, A., Banach, A., Bacza, T. & Pieczykolan, M. (2014). Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production. World J. Microbiol. Biotechnol., 30(12), pp. 3047-3053, DOI: 10.1007/s11274-014-1731-z
Ziembińska-Buczyńska, A., Banach-Wiśniewska, A., Tomaszewski, M., Poprawa, I., Student, S. & Cema, G. (2019). Ecophysiology and dynamics of nitrogen removal bacteria in a sequencing batch reactor during wastewater treatment start-up. Int. J. Environ., 16(8), pp. 4215-4222, DOI: 10.1007/s13762-019-02275-w
Go to article

Authors and Affiliations

Anna Banach-Wiśniewska
Filip Gamoń
Aleksandra Ziembińska-Buczyńska

  1. Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Gliwice, Poland
Download PDF Download RIS Download Bibtex


This paper presents investigations on the removal of cyclohexane and ethanol from air in polyurethane- -packed biotrickling filters, inoculated with Candida albicans and Candida subhashii fungal species. Results on process performance together with flow cytometry analyses of the biofilm formed over packing elements are presented and discussed. The results indicate that the presence of ethanol enhances the removal efficiency of cyclohexane from air. This synergistic effect may be attributed to both co-metabolism of cyclohexane with ethanol as well as increased sorption efficiency of cyclohexane to mineral salt medium in the presence of ethanol. Maximum elimination capacities of 89 g m-3 h-1 and 36.7 g m-3 h-1 were noted for cyclohexane and ethanol, respectively, when a mixture of these compounds was treated in a biofilter inoculated with C. subhashii. Results of flow cytometry analyses after 100 days of biofiltration revealed that about 91% and 88% of cells in biofilm remained actively dividing, respectively for C. albicans and C. subhashii species, indicating their good condition and ability to utilize cyclohexane and ethanol as a carbon source.
Go to article


  1. Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2007). Biotrickling filtration of air contaminated with ethanol, Journal of Chemical Technology and Biotechnology, 82, pp. 149–157,
  2. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds, Biotechnology Advances, 34, 1091–1102,
  3. Cheng, Y., Li, X., Liu, H., Yang, C., Wu, S., Du, C., Nie, L. & Zhong, Y. (2020). Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters, Chemosphere 252, 126490,
  4. Cox, H.H.J., Sexton, T., Shareefdeen, Z.M. & Deshusses, M.A. (2001). Thermophilic Biotrickling Filtration of Ethanol Vapors, Environmental Science and Technology, 35, pp. 2612–2619,
  5. Ferdowsi, M., Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2017). Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review, International Biodeterioration and Biodegradation, 119, pp. 336–348,
  6. Gospodarek, M., Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2019). Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air, Processes 7, 187,
  7. He, S., Ni, Y., Lu, L., Chai, Q., Yu, T., Shen, Z. & Yang, C. (2020). Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils, Chemosphere 242, 125237,
  8. Martinez-Rojano, H., Mancilla-Ramirez, J., Quiñonez-Diaz, L. & Galindo-Sevilla, N. (2008). Activity of hydroxyurea against Leishmania mexicana, Antimicrobial Agents Chemotheraphy 52, pp. 3642–3647,
  9. Miller, U., Sówka, I. & Adamiak, W. (2019). The effect of betaine on the removal of toluene by biofiltration, SN Applied Sciences 1,
  10. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofi ltration, Archives of Environmental Protection, Vol. 46 no. 2 pp. 53–57, DOI: 10.24425/aep.2020.133474.
  11. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A. & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours – A review, Journal of Environmental Management 91, pp. 1039–1054,
  12. Purswani, J., Juárez, B., Rodelas, B., Gónzalez-López, J. & Pozo, C. (2011). Biofilm formation and microbial activity in a biofilter system in the presence of MTBE, ETBE and TAME, Chemosphere 85, pp. 616–624,
  13. Ramani, R., Ramani, A. & Wong, S.J. (1997). Rapid Flow Cytometric Susceptibility Testing of Candida albicans, Journal of Clinical Microbiology 35(9):2320-4, DOI: 10.1128/jcm.35.9.2320-2324.1997.
  14. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter – Process Performance and Monitoring Using Electronic Nose, Sustainability 12, 387,
  15. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019a). Treatment of malodorous air in biotrickling filters: A review, Biochemical Engineering Journal 141, pp. 146–162,
  16. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019b). Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air, Chemical Papers 74, pp. 1039–1047,
  17. Salamanca, D., Dobslaw, D. & Engesser, K.-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system, Chemosphere 176, pp. 97–107,
  18. Spigno, G., Pagella, C., Fumi, M.D., Molteni, R. & De Faveri, D.M. (2003). VOCs removal from waste gases: Gas-phase bioreactor for the abatement of hexane by Aspergillus niger, Chemical Engineering Science 58, pp. 739–746,
  19. Yalkowsky, S.H., He, Y. & Jain, P. (2016). Handbook of Aqueous Solubility Data, Handbook of Aqueous Solubility Data. CRC Press,
  20. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration, Biotechnology Advances 28, 4, pp. 531–540,
  21. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G. & Xi, J. (2018). Simultaneous Removal of Multicomponent VOCs in Biofilters, Trends in Biotechnology 36, 7, pp. 673–685,
  22. Zhang, Y., Liss, S.N. & Allen, D.G. (2006). The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters, Biotechnology and Bioengineering 95, pp. 734–743,
  23. Zhang, Y., Liu, J., Qin, Y., Yang, Z., Cao, J., Xing, Y. & Li, J. (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter, Journal of Hazardous Materials 365, pp. 642–649,
  24. Zhanga, Y., Denga, W., Qina, Y., Yanga, Z., Liua, J. & Lia, J. (2018) Research on Simultaneous Removal of Cyclohexane and Methyl Acetate in Biotrickling Filters, Proceedings of the 2nd International Conference of Recent Trends in Environmental Science and Engineering, Niagara Falls, Canada,
Go to article

Authors and Affiliations

Piotr Rybarczyk
Milena Marycz
Bartosz Szulczyński
Anna Brillowska-Dąbrowska
Agnieszka Rybarczyk
Jacek Gębicki

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology
  2. Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology
  3. Department of Histology, Faculty of Medicine, Medical University of Gdańsk
Download PDF Download RIS Download Bibtex


A hydroponic trial was conducted to study the effect of chloride salinity in simulated effluent on Cd accumulation by tobacco. Leaf surface area (LSA) and root surface area (RSA) measurements were incorporated as possible determinants of Cd uptake rate by plants. Results showed that individual plant differences in Cd content were normalized when including RSA to express Cd uptake rates by plants but not including LSA. A biotic ligand model (BLM) fitted to predict Cd uptake, estimated active and almost linear uptake of the free Cd2+ ion by tobacco plants, while virtually no changes in the chloride complex (CdCl+) uptake were predicted, presumably due to a rapid saturation of the hypothetical root sorption sites at the concentrations used in this trial. Nicotiana tabacum var. K326 is evidenced to be a species potentially suitable for biological wastewater treatment using rhizofiltration at concentrations commonly found in salt-affected wastewater, with high Cd accumulation (185 to 280 mg/kgd.m.) regardless of water salinity and tolerance up to 80 mmol/L NaCl.
Go to article


1. Berkelaar, E., & Hale, B. (2000). The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars, Canadian Journal of Botany, 78, 3, pp. 381-387. DOI: 10.1139/b00-015
2. Berkelaar, E., & Hale, B. (2003). Cadmium accumulation by durum wheat roots in ligand buffered hydroponic culture: uptake of Cd ligand complexes or enhanced diffusion? Canadian Journal of Botany, 81, 7, pp. 755-763. DOI: 10.1139/b03-061
3. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sedime nt Contamination: An International Journal, 23, (6), 628-640.
4. Candelario-Torres, M.F. (2014). Rhizofiltration of metal polluted effluents by Nicotiana tabacum, M.Sc. diss., Universidad Autonoma de Nuevo Leon (in Spanish), pp. 1-63.
5. Durand, T.C., Hausman, J.F., Carpin S., Alberic, P., Baillif, P., Label, P. & Morabito, D. (2010). Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba, Biologia Plantarum, 54, 1, pp. 191-194.
6. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sediment Contamination: An International Journal , 23, 6, pp. 628-640.
7. Erdem, H., Kinay, A., Öztürk, M. & Tutuş, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars, Journal of Food, Agriculture and Environment, 10, 1, pp. 965-969.
8. Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, Journal of Plant Growth Regulation, 31, 3, pp. 292-308. DOI: 10.1007/s00344-011-9239-3
9. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresoure Technology, 99, 9, pp. 3864-3870. DOI: 10.1016/j.biortech.2007.06.047
10. He, J.G., Liu, F., Han, B.P., Zhao, B.W. & Liu, J. (2011a). Treatment of tannery wastewater with salt tolerant bacteria basing on different culture mediums, Advanced Materials Research , 403-408, 1, pp. 625-633. DOI: 10.4028/
11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., & Luo, Z.B. (2011b). Net cadmium flux and accumulation reveal tissue‐specific oxidative stress and detoxification in Populus × canescens, Physiologia Plantarum, 143, 1, pp. 50-63. DOI: 10.1111/j.1399-3054.2011.01487.x
12. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., & Luo, Z.B. (2013). A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens, Plant Physiology, 162, 1, pp. 424-439. DOI: 10.1104/pp.113.215681
13. He, J., Li, H., Ma, C., Zhang, Y., Polle, A., Rennenberg, H. & Luo, Z.B. 2015. Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar, New Phytologist, 205, 1, pp. 240-254. DOI: 10.1111/nph.13013
14. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 6951, pp. 901-908.
15. Li, X., Ding, F., Lo, P. & Sin, S. (2002). Electrochemical disinfection of saline wastewater effluent, Journal of Environmental Engineering, 128, 8, pp. 697-704. DOI: 10.1061/(ASCE)0733-9372(2002)128:8(697)
16. Lin, B., Gao, H., & Lai, H. (2016). Spatial Characterization of Arsenic, Cadmium, and Lead Concentrations in Tobacco Leaves and Soil, Analytical Letters, 49, 10, pp. 1622-1630. DOI: 10.1080/00032719.2015.1113419
17. López-Chuken, U.J. & Young, S.D. (2005). Plant Screening of Halophyte Species for Cadmium Phytoremediation, Zeitschrift für Naturforschung C, 60, 3-4, pp. 236-243. PMID:15948589
18. López-Chuken, U.J. & Young, S.D. (2010). Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity, Journal of Environmental Sciences, 22, 7, pp. 1080-1085. DOI: 10.1016/S1001-0742(09)60220-5
19. López-Chuken, U.J., Young, S.D. & Guzman-Mar, J.L. (2010). Evaluating a ´biotic ligand model´ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity, Environmental Technology, 31, 3, pp. 307-318. DOI: 10.1080/09593330903470685
20. López-Chuken, U.J., López-Domínguez, U., Parra-Saldivar, R., Moreno, E., Hinojosa, L., Guzmán-Mar, J.L. & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced Cd uptake in (saline) agriculture: modeling Cd uptake by maize and tobacco, International Journal of Environmental Science and Technology, 9, 1, pp. 69-77. DOI: 10.1007/s13762-011-0018-2
21. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M. & Wagner, G.J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Advances in Agronomy, 83, 1, pp. 111-118. DOI: 10.1016/S0065-2113(04)83003-7
22. Pandey, S.K. & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation, Journal of Botany, 2011, pp. 1-6. DOI: 10.1155/2011/658240
23. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, The Plant Journal, 32, 4, pp. 539-548. DOI: 10.1046/j.1365-313X.2002.01442.x
24. Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J. & Kryński, K. (2004). Phytoextraction crop disposal--an unsolved problem, Environmental Pollution, 128, 3, pp. 373-379. DOI: 10.1016/j.envpol.2003.09.012
25. Tipping, E., Rey-Castro, C., Bryan, S.E. & Hamilton-Taylor, J. (2002). “Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimoca et Cosmochimica Acta, 66, 18, pp. 3211-3224. DOI: 10.1016/S0016-7037(02)00930-4
26. United Nations. (2013). “The Eight Millenium Development Goals.” Accesed 29 February 2016.
27. Wang, X., Cheng, S., Zhang, X., Li, X. &. Logan, B.E. (2005). Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, 21, pp. 13900-13906. DOI: 10.1016/j.ijhydene.2011.03.052
28. Wani, P.A., Khan, M.S. & Zaidi, A. (2005). Toxic effects of heavy metals on germination and physiological processes of plants.” [In:] Toxicity of heavy metals to legumes and bioremediation, edited by Zaidi, A., Wani, P.A. & Khan M.S. Springer, Netherlands, pp. 45-66. DOI: 10.1007/978-3-7091-0730-0
29. Weggler-Beaton, K., McLaughlin, M.J. & Graham, R.D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Australian Journal of Soil Research, 38, 1, pp. 37-45. DOI: 10.1071/SR99028
30. Xu, Z. & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, Journal of Experimental Botany, 59, 12, pp. 3317-3325.DOI: 10.1093/jxb/ern185
31. Yadav, A. K., Pathak, B. & Fulekar, M.H. (2015). Rhizofiltration of Heavy Metals (Cadmium, Lead and Zinc) From Fly Ash Leachates Using Water Hyacinth (Eichhornia crassipes), International Journal of Environment, 4, 1, pp. 179-196. DOI: 10.3126/ije.v4i1.12187
Go to article

Authors and Affiliations

Ulrico Javier Lopez-Chuken
Icela Dagmar Barceló-Quintal
Evangelina Ramirez-Lara
Maria Elena Cantu-Cardenas
Juan Francisco Villarreal-Chiu
Julio Cesar Beltran-Rocha
Claudio Guajardo-Barbosa
Carlos Jesus Castillo-Zacarias
1 3
Sergio Gomez-Salazar
Eulogio Orozco-Guareno

  1. Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
  2. Basic Science and Engineering Division, Metropolitan Autonomus University – Azcapotzalco Unit, Mexico
  3. Monterrey Technological Institute of Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Mexico
  4. Exact Sciences and Engineering University Center (CUCEI).University of Guadalajara, Mexico
Download PDF Download RIS Download Bibtex


The leachate problem is important and difficult to solve in Poland and in the world. The composition and their properties leachates depend on the age of the landfill, type of waste, climatic conditions and the mode of operation of the landfill. A significant part of landfilled waste is subject to so-called humification. This process stabilizes organic substances in the landfill and creates humic substances that penetrate into the leachate. The leaks contain many toxic impurities, such as PAHs, pesticides, polychlorinated biphenyls and other substances hazardous to human health and life, which can be sorbed by humic substances. Leachates from three municipal landfills, differing in the characteristics of the stored waste, were studied. Fulvic acids (FAs) were extracted on the basis of affinity for specific solvents along with the use of sorption. The obtained acids were subjected to a qualitative analysis of the content of micro-impurities, essential elements forming the structure of the fulvic acid molecule, and their infrared spectra were tested. It has been noticed that with the age of waste deposited, the content of elemental carbon increases, and the amount of oxygen and hydrogen decreases. The degree of purity of fulvic acids was influenced by the time of waste storage, and the sulfur content depended on their characteristics. With the time of waste storage, the characteristics of the acids obtained were approaching humic acids, and the intensity of absorption bands clearly increased. The spectra obtained correlate well with those of fulvic acids available in the literature, and the findings provide scientific confirmation of the need for further research on the characteristics of fulvic acids.
Go to article


Anielak, A. (2019). Humic acids: extraction, analysis and importance in the environment as well as methods for their removal. Przemysł Chemiczny, 98 (10), pp. 1580-1586.
Anielak, A., Grzegorczuk, M. & Schmidt, R. (2008). The products of oxidation of fulvic acids with sodium chlorate(I) and dioxidane. Przemysł Chemiczny, 87 (4), pp. 702-706.
Anielak, A.M., Kryłów, M. & Łomińska-Płatek, D. (2018). Characterization of fulvic acids contained in municipal sewage purifi ed with activated sludge. Archives of Environmental Protection 44 (1), pp. 70-76. DOI 10.24425/118183
Araujo, B., Doumer, M. & Mangrich, A. (2017). Evaluation of the interactions between chitosan and humics in media for the controlled release of nitrogen fertilizer. Journal of Environmental Management, 190, pp. 122-131.
Baettker, E., Kozak, C., Knapik, H. & Aisse, M. (2020). Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere, 251, 126414
Bai, H., Chang, Q., Shi, B. & Sham, A. (2013). Effects of fulvic acid on growth performance and meat quality in growing-finishing pigs. Livestock Science, 158 (1-3), pp. 118-123.
Biedugnis, S., Podwójci, P. & Smolarkiewicz, M. (2003). Optimization of municipal waste management on a micro and macro-regional scale. Warsaw: Polish Academy of Sciences.
Claret, F., Tournassat, C., Crouzet, C., Gaucher, E., Schäfer, T., Braibant, G. & Guyonnet, D. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. Waste Management, 31, pp. 2036-2045.
Collado, S., Nunez, D., Oulego, P., Riera, F. & Diaz, M. (2020). Effect of landfill leachate ageing on ultrafiltration performance and membrane fouling behaviour. Journal of Water Process Engineering, 36, 101291.
Dong-June, S., Yoon-Jim, K., Sang-Yee, H. & Dong-Hoon, L. (2007). Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues. Journal of Hazardous Materials, 148, pp. 679 - 692.
Elahi, A., Arooj, I., Bukharo, D. & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, pp. 3729-3743.
Esparza-Soto, M. & Westerhoff, P. (2003). Biosorption of humic and fulvic acids to live activated sludge biomass. Water Research, 37, pp. 2301-2310.
Frączek, K. & Grzyb, J. (2009). Sanitary analyses of surface water in the influence area of municipal waste dump Barycz in Krakow. Ecological Chemistry and engineering A. , 16 (9), pp. 1107-1116.
Gautam, P., Kumar, S. & Lokhandwala, S. (2019). Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. Journal of Cleaner Production, 237 (10), 117639.
Ghosh, P., Thakur, I. & Kaushik, A. (2017). Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, pp. 259-270.
Gong, G., Yuan, X., Zhang, Y., Li, Y., Liu, W., Wang, M., Zhao, Y. & Xu, L. (2020). Characterization of coal-based fulvic acid and the. RSC Advances, 10, pp. 5468-5477.
Gong, G., Zhao, Y., Zhang, Y., Deng, B., Liu, W., Wang, M., Yuan, X. & Xu, L. (2020). Establishment of a molecular structure model for classified products of coal-based fulvic acid. Fuel, 267, 117210.
GUS. (2020). Central Statistical Office. Waste management in the urban and rural commune of Włoszczowa. Retrieved from:
GUS. (2020). Central Statistical Office. Wild dumps. Warszawa. Retrieved from:
Han Y.S., Lee, J.Y., Miller, C.J. & Franklin, L. (2009). Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners. Waste Manag. Res. , 27 (3), pp. 233-241.
He, M., Shi, Y. & Lin, C. (2008). Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. Journal of Environmental Sciences, 20 (11), pp. 1294-1299.
Huo, S., Xi, B., Yu, H., He, L., Fan, S. & Liu, H. (2008). Characteristics of dissolved organic matter (DOM) in leachate with. Journal of Environmental Science, 20 (4), pp. 492-498.
Islam, M., Xu, Q. & Yuan, Q. (2020). Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. Journal of Environmental Health Science and Engineering, 18, pp. 285-295.
Jayasooriya, R., Dilshara, M., Kang, C.-H., Lee, S., Choi, Y., Jeong, Y. & Kim, G.-Y. (2016). Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. International Immunopharmacology, 36, pp. 241-248.
Jin, J., Sun, K., Yang, Y., Wang, Z., Han, L., Wang, X., Wu, F. & Xing, B. (2018). Comparison between Soil- and Biochar-Derived Humic Acids: Composition, Conformation, and Phenanthrene Sorption. Environmental Science and Technology, 52 (4), pp. 1880-1888.
Kalousek, P., Schreiber, P., Vyhnanek, T., Trojan, V., Adamcova, D. & Veverkova, M. (2020). Effect of Landfill Leachate on the Growth Parameters in Two Selected Varieties of Fiber Hemp. International Journal of Environmental Research, 14, pp. 155-163.
Kapelewska, J. (2018). The landfill leachate as a potential source of pollution of the aquatic environment. Białystok: PhD dissertation. University of Bialystok. Faculty of Biology and Chemistry.
Khalil, C., Al Hageh, C., Korfali, S. & Khnayzer, R. (2020). Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere, 208, pp. 1-13.
Kjeldsen, P., Barlaz, M., Rooker, A. B., Ledin, A. & Christensen, T. (2002). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32 (4), pp. 297-336.
Klöcking, R. & Helbig, B. (2005). Medical aspect and applications of humic substances. [In:] A. Steinbüchel, & R. Marchessauldt. (Eds) Biopolymers for Medical and Pharmaceutical Applications, pp. 3-16. Weinheim, Germany: Wiley-VCH.
Klojzy – Kaczmarczyk, B., Makoudi, S., Mazurek, J. & Staszczak, J. (2016). The storage and the impact for environment of Barycz municipal landfill. Scientific Journals of the Institute of Mineral and Energy Economy of the Polish Academy of Sciences, 92, pp. 195-210.
Klojzy-Karczmarczyk, B. (2018). Report on the implementation of the Environmental Protection Program of the Włoszczowa Poviat for the years 2016-2019 with the perspective until 2023 for the years 2016-2017. Kraków - Włoszczowa.
Kurtyka, M. (2020). Regulation of the Minister of Climate of 2 January 2020 on the waste catalog (Journal of Laws of 2020, item 10). Warszawa: Journal of Laws of the Republic of Poland.
Leboda, R. & Oleszczuk, P. (2002). Municipal waste and its management. Selected issues. Lublin: UMCS.
Li, J., Ding, Y., Wang, K., Ku, N., Qian, G., Xu, Y. & Zhang, J. (2020). Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere, 241, 125038.
Li, X., Li, X., Han, B., Zhao, Y., Li, T., Zhao, P. & Yu, X. (2019). Improvement in lipid production in Monoraphidium sp. QLY-1 by combining fulvic acid treatment and salinity stress. Bioresource Technology, 294, 122179.
Linczar, M. (1985). Properties of soils and directions of their evolution on eroded terrains of the Głubczyce Plateau. Roczniki AR, 27 (4), pp. 107-148.
Liu, L., Ji, M., Wang, F., Tian, Z., Wang, T., Wang, S., Wang, S. & Yan, Z. (2020). Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Science of The Total Environment, 704, 135285.
Luo, H., Zeng, Y., Cheng, Y., He, D. & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of The Total Environment, 703, 135468.
Łabaz, B. (2010). Properties of humic acids in phaeozems of the Kłodzko district. Water - Environment - Rural Area, 10 (31), pp. 153-164.
MacCarthy, P. & Rice, J. (1994). Industrial applications of humus. [In] N. Sensei, & T. Miano (Eds) Substances in the Global Environment and Implications on Human Health (pp. 1209-1223). Bari, Italy: Proc. 6th Intern. Meetings of the Intern. Humic Substances Soc., Monopoly.
Mao, Y. (2019). Modulation of the growth performance, meat composition, oxidative status, and immunity of broilers by dietary fulvic acids. Poultry Science, 98 (10), pp. 4509-4513.
Mark, A.N. & Nopawan, R. (2002). Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Research, 36 (6), pp. 1572 - 1584.
MPO. (2010). Operating instructions for the Barycz municipal waste landfill in Krakow. Actualization. Kraków: MPO Kraków.
Negi, P., Mor, S. & Ravindra, K. (2020). Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environment, Development and Sustainability, 22 (1), pp. 1455-1474.
PGKiM. (2019). Data received from the administrator. Włoszczowa.
Qi, G., Yue, D. & Nie, Y. (2012). Characterization of humic substances in bio-treated municipal solid waste landfill leachate. Frontiers of Environmental Science & Engineering, 6 (5), pp. 711–716.
Rani, A., Negi, S., Hussain, A. & Kumar, S. (2020). Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresource Technology, 297, 122437.
Rosik-Dulewska, C. (2010). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Rosik-Dulewska, C. (2020). Fundamentals of Waste Management. Warsaw: Polish Scientific Publishers PWN.
Shuiqin, Z., Liang, Y., Wei, L., Zhian, L. Y., Shuwen, H. & Bingqiang, Z. (2017). Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere, 166, pp. 334-342.
Siemieniec, A. & Siemieniec, M. (2015). Instructions for managing a municipal waste landfill in Promnik. Kielce: PGO Kielce.
Soujanya Kamble, B., Saxena, P., Kurakalva, R. & Shankar, K. (2020). Evaluation of seasonal and temporal variations of groundwater quality around Jawaharnagar municipal solid waste dumpsite of Hyderabad city, India, 2 (3), pp. 1-22.
Tahiri, A., Richel, A., Destain, J., Druart, P., Thonart, P. & Ongena, M. (2016). Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Analytical and Bioanalytical Chemistry, 408 (7), pp. 1917-1928.
Uyguner, C., Hellriegel, C., Otto, W. & Larive, C. (2004). Characterization of humic substances: Implications for trihalomethane formation. Analytical and Bioanalytical Chemistry, 378, pp. 1579-1586.
Vithanage, M., Wijesekara, H. & Mayakaduwa, S. (2014). Management of Municipal Solid Waste Landfill Leachate: A Global Environmental Issue. In: M. Vithanage, H. Wijesekara, A. Siriwardana, S. Mayakaduwa, & Y. OK, Environmental deterioration and human health: Natural and anthropogenic determinants (pp. 236-287).
Walenczak, K. (2011). Characterization of soils of central and eastern part of Wroclaw. Wrocław: PhD dissertation. University of Life Sciences in Wroclaw.
Wang, H., Wang, Y., Li, X., Sun, Y., Wu, H. & Chen, D. (2016). Removal of humic substances from reverse osmosis (RO) and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment. Waste Management, 56, pp. 271 - 279.
Wang, Y., Yang, R., Zheng, J., Shen, Z. & Xu, X. (2019). Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 167, pp. 10-19.
Welter, J., Soares, E., Rotta, E. & Seibert, D. (2018). Bioassays and Zahn-Wellens test assessment on landfill leachate treated by photo-Fenton process. Journal of Environmental Chemical Engineering, 6 (1), pp. 1390-1395.
Weng, L., Van Riemsdijk, W., Koopal, L. & Hiemstra, T. (2006). Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. Journal of Colloid and Interface Science, 302 (2), pp. 442-457.
Xiaol, C., Guixiang, L., Xin, Z., Yongxia, H. & Youcai, Z. (2012). Fluorescence excitation–emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Management, 32 (3), pp. 438-447.
Xu, D., Deng, Y., Xi, P., Yu, G., Wang, Q., Zeng, Q., Jiang, Z. & Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 286, pp. 226-233.
Yang, S., Zhuo, K., Sun, D., Wang, X. & Wang, J. (2019). Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. Journal of Colloid and Interface Science, 543, pp. 263-272.
Yi, Q., Mi, Z., Weifeng, D., Cheng, X., Baocai, L. & Qingming, J. (2019). Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation. Fitoterapia, 137, 104270.
Zhang, J., Gong, J., Zenga, G., Ou, X., Jiang, Y., Chang, Y., Guo, M., Zhang, G. & Liu, H. (2016). Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. Applied Surface Science, 370, pp. 335-350.
Zhang, S. W. (2014). Characteristics of Soil Humic Substances as Determined by Conventional and Synchrotron Fourier Transform Infrared Spectroscopy. Journal of Applied Spectroscopy, 81 (5), pp. 843-849.
Go to article

Authors and Affiliations

Tomasz Orliński
Anna M. Anielak

  1. Department of Environmental Engineering, Institute of Water Supply and Environmental Protection, Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex


This study investigated the Octyl Phenol Ethoxylate (OPE) removal potentials of raw and treated industrial treatment sludges (ITS) at different pH. Experiments were conducted in a set of 500 ml Erlenmeyer flasks, into which OPE solutions of 300 ml with different initial concentrations (50–300 μg/l) were added into. Adsorption of Octyl Phenol Ethoxylate from an aqueous solution into ITS105 (T=105°C), ITS300 (T=300°C), ITS600 (T=600°C) and ITS450 (pyrolyzed, T=450°C) was carried out at a room temperature. The OPE adsorption rate increase in the treatment sludge processed at 600°C. As opposed to the sludge treated at 105°C, the adsorption rate decreased as the concentration increased. The reason for this was that the porous structure was degraded at 600°C, and the surface charge balance was disrupted. ITS300 had a lower adsorption capacity for Octyl Phenol Ethoxylate removal than ITS105, ITS600 and ITS450 (pyrolyzed). The treatment sludge pyrolyzed at 450°C conformed with the Freundlich isotherm at pH 4 (R2=0.94) and pH 7 (R2=0.89). The treatment sludge heat-treated at 600°C conformed with the Freundlich isotherm at pH 4 (R2=0.97), pH 7 (R2=0.98) and pH 10 (R2=0.99). Additionally, for ITS600, the Brunauer, Emmett and Teller (BET) isotherm was valid at neutral pH. The OPE adsorption coefficient for ITS600 at pH 4 and pH 7 was calculated as 1.05 L/μg and 1.083 L/μg, respectively. According to the BET isotherm (for ITS600) the qm values at pH 4 and pH 7 were respectively 8.21 μg/g and 2.92 μg/g. The temperature of the adsorption value obtained with the Temkin isotherm showed that the interaction between the OPE and the adsorbent substances was not a chemical or ionic interaction but probably a physical interaction.
Go to article


1. Adegoke, K.A. & Bello, O.S. (2015). Dye sequestration using agricultural wastes as adsorbents, Water Resources and Industry, 12, pp.8–24,
2. Araujo, C.S.T., Almeida, I.L.S., Rezende, H.C. & Marcionilo, S.M.L.O. (2018). Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit(Solanum ly-cocarpum) using Langmuir, Freundlich and Temkin isotherms, Microchemical Journal, 137, pp. 48-354,
3. Auta, M. & Hameed, B.H. (2012). Modified mesoporous clay adsorbent for adsorp-tion isotherm and kinetics of methylene blue, Chemical Engineering Journal,198-199, pp. 219-227,
4. Choi, H.J. & Yu, S.W. (2019). Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environmental Engineering Research, 24, 1, pp.99-106,
5. Cirja, M., Ivashechkin, P., Schäffer, A. & Corvini, P. F. (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR), Reviews in Environmental Science and Bio/Technology, 7, 1, pp. 61-78, DOI 10.1007/s11157-007-9121-8.
6. Kulkarni, S.J. (2015). A short review on arsenic removal from water, International Journal of Innovative Research in Science Engineering and Technology, 1, 1, pp. 253-256.
7. Dinçer, A.R., Güneş, Y., Hancı, T.Ö., Güneş, E. & Khoei, S. (2018). Effects of Endocrine Disrupting compounds (Bisphenol A and Octyl Phenol Ethoxylate) on COD removal efficiency, SAR Journal, 1, 2, pp. 35-4, doi: 10.18421/SAR12-01
8. Fan, X. & Zhang,X. (2008). Adsorption properties of activated carbon from sewage sludge to alkaline-black, Materials Letters, 62, 10-11, pp. 1704-1706, DOI: 10.1016/j.matlet.2007.09.085
9. Ferguson, P. L., Iden, C. R.& Brownawell, B. J. (2000). Analysis of alkylphenol etox-ylate metabolities in the aquatic environment using liquid chromatography electros pray mass spectrometry, Analytical Chemistry, 72, 18, pp. 4322-4330,
10. Gu, H., Lin, W., Sun, S., Wu, C., Yang, F., Ziwei, Y., Chen, N., Ren, J. & Zheng, S. (2021). Calcium oxide modification of activated sludge as a low-cost adsorbent: Prep-aration and application in Cd(II) removal, Ecotoxicology and Environmental Safety, 209, 111760, 11. Gupta, S. & Babu, B.V. (2009). Removal of toxic metal Cr(VI) from aqueous solu-tions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies, Chemical Engineering Journal, 150, 2-3, pp. 352-365,
12. Jain,A.K., Gupta, V. K., Bhatnagar, A. & Suhas. (2003). Utilization of industrial wasteproducts as adsorbent for the removal of dyes, Journal of Hazardous Materials, 101, 1, pp. 31-42,
13. Joshi, M., Bansal, R., Purwar, R. (2004). Colour removal from textile effluents, Indian Journal of Fibre and Textile Research, 29, 2, pp.239-259.
14. Khoshbouy, R., Takahashi, F. & Yoshikawa, K. (2019). Preparation of high sutface area sludge based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye, Environmental Research, 175, pp. 457-467, DOI: 10.1016/j.envres.2019.04.002
15. Li, Y., Chang, F., Huang, B., Song, Y., Zhao, H. & Wang, K. (2020). Activated car-bon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage, Fuel, 266, 117053,
16. Lonappan, L., Rouissi, T., Das, R.K., Brar, S.K., Ramirez, A.V., Verma, M., Suram-palli, R.Y. & Valero, J.R. (2016). Adsorption of metylene blue on biochar microparti-cles derived from different waste materials, Waste Management, 49, pp. 537-544, DOI: 10.1016/j.wasman.2016.01.015
17. Moreira, M.T., Noya, I. & Feijoo, G. (2017). The prospective use of biochar as adsorp-tion matrix – a review from a lifecycle perspective, Bioresource Technology, 246, pp. 135–141.
18. Namasivayam, C. & Yamuna, R.T. (1992). Removal of congo red from aqueous solu-tions by biogas waste slurry, Journal of Chemical Technology and Biotechnolo-gy, 53, 2, pp. 153-157,
19. Nidheesh, P.V., Gandhimathi, R., Ramesh, S.T. & Singh, T.S.A. (2012). Kinetic anal-ysis of crystal violet adsorption on to bottom ash, Turkish Journal of Engineering and Environmental Sciences, 36, pp. 249-262, DOI: 10.3906/muh-1110-3.
20. Nimrod, A.C.& Benson, W.H. (1996). Environmental estrogenic effects of Alkyphe-nol ethoxylates, Critical Reviews in Toxicology, 26, 3, pp.335-364, DOI: 10.3109/10408449609012527.
21. Nunes A, Franca, S.A. & Olievera, L.S. (2009). Activated carbon from waste biomass: An alternative use for biodiesel production solid residues, Bioresource Technology, 100, 5, pp. 1786 -1792,
22. Perez, M., Torrades, F., Domenech, X. & Peral, J.F. (2002). Oxidation of Textile Effluents, Water Research, 36, 11, pp. 2703-2710,
23. Ravenni, G., Gafaggi, G., Sarossy, Z., Nielsen, K.T.R., Ahrenfeldt, J. & Henriksen, U.B. (2020). Waste chars from wood gosification and wastewater sludge pyrolysis compared to commercial activated carbon for the removal of cationic and anionic dyes from aqueous solution, Bioresource Technology Reports, 10, 100421, DOI: 10.1016/j.biteb.2020.100421.
24. Ringot, D., Lerzy, B., Chaplain, K., Bonhoure, J. P., Auclair, E. & Larondelle,Y. (2007). In vitro biosorption of ochratoxin A on the yeast industry by-products: com-parison of isotherm models, Bioresource Technology, 98,9, pp. 1812–1821, DOI: 10.1016/j.biortech.2006.06.015.
25. Seo, J. H., Kim, N., Park, M., Lee, S., Yeon, S. & Park, D. (2020). Evaluation of metal removal performance of rod-type biosorbent prepared from sewage-sludge, Environmental Engineering Research, 25, 5, pp. 700-706,
26. Sewu, D. D., Boakye, P. & Woo, S. H. (2017). Highly efficient adsorption of cationic dye bybiochar produced with Korean cabbage waste, Bioresource Technology, 224, pp. 206–213.
27. Sirianuntapiboon, S. & Saengow, W. (2004). Removal of Vat Dyes from Textile Wastewater Using Biosludge, Water Quality Research Journal, 39, 3, pp. 276-284, DOI: 10.2166/wqrj.2004.038.
28. Tan, I. A. W., Ahmad, A. L. & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, Journal of Hazardous Materials, 164, 2-3, pp. 473–482,
29. Tsai, W. T., Lai, C. W. & Su, T. Y. (2006). Adsorption of Bisphenol-A from Aqueous Solution onto Minerals and Carbon Adsorbats, Journal of Hazardous Materials, 134, 1-3, pp. 169-175.
30. Umar, M., Roddick, F., L.Fan. & Aziz, H.A. (2013). Application of ozone for the re-moval of bisphenol A from water and wastewater - A review, Chemosphere, 90, 8, pp. 2197-2207,
31. Vera, L. M., Bermejo, D., Uguna, M. F., Garcia, N., Flores, M. & Gonzalez, E. (2019). Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse, Environmental Engineering Research, 24, 1, pp. 33-37,
32. Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K. &Velan, M. (2006). Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, Journal of Hazardous Materials, 133, 1-3, pp. 304–308,
33. Wang, H., Lou, X., Hu, Q. & Sun, T. (2021). Adsorption of antibiotics from water by using Chnese herbal medicine residues derived biochar: Preparation and properties studies, Journal of Molecular Liquids, 325, 114967,
34. Yang, X., Xu, G., Yu, H. & Zhang, Z. (2016). Preparation of ferric activated sludge based adsorbent from biological sludge for tetracycline removal, Bioresource Technology, 211, pp. 566-573,
35. Zhang, L., Pan, J., Liu, L., Song, K. & Wang, Q. (2019). Combined physical and chemical activation of sludge-based adsorbent enhances Cr(VI) removal from wastewater, Journal of Cleaner Production, 238, 117904,
Go to article

Authors and Affiliations

Ali Rıza Dinçer
İbrahim Feda Aral

  1. Namık Kemal University, Çorlu, Tekirdağ-Turkey
Download PDF Download RIS Download Bibtex


In this work, source apportionment for unsupported 210Po was conducted. The activity size distributions of both supported and unsupported 210Po in urban aerosols were measured from February to December 2019. The results confirmed that the activity of 210Po in the atmosphere is significantly increased by additional 210Po content related to coal combustion by-product releases, especially in the cold winter season. The sources of this content are local emissions and long-range transport processes. Unsupported activity concentrations of 210Po and weather parameters (temperature, humidity, and wind velocity) were used for source apportionment from three heating systems.
Go to article


1. Aba, A., Ismaeel, A., Al-Boloushi, O., Al-Shammari, H., Al-Boloushi,A. & Malak, M. (2020). Atmospheric residence times and excess of unsupported 210Po in aerosol samples from the Kuwait Bay-Northern Gulf, Chemosphere, 261, 127690, DOI: 10.1016/j.chemosphere.2020.127690
2. Adu J. & Vellaisamy, Kumarasamy, M. (2020). Mathematical model development for non-point source in-stream pollutant transport. Archives of Environmental Protection , 46, 2, pp. 91–99, DOI 10.24425/aep.2020.133479
3. Baskaran, M. (2011). Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review, Journal of Environmental Radioactivity, 102, pp. 500-513.
4. Behbehani, M., Uddin, S. & Baskaran, M.( 2020). 210Po concentration in different size fractions of aerosol likely contribution from industrial sources, Journal of Environmental Radioactivity, 222, 106323.
5. Botezatu, E., Grecea, C. & Botezatu, G.(1996). Radiation exposure potential from coal-fired power plants in Romania Vienna, International Congress On Radiation Protection.
6. EURACOAL, (2020).European Association for Coal and Lignite, Coal Industry across the Europe 7-th edition, ISSN 2034-5682.
7. Filizok, I. & Gorgün A.U., (2019).Atmospheric depositional characteristics of 210Po, 210Pb and some trace elements in Izmir, Turkey, Chemosphere, 220, pp. 468-475.
8. Hirose, K., Kikawada, Y, Doi, T. Su, C.C. & Yamamoto, M.(2011). 210Pb deposition in the Far East Asia: controlling factors of its spatial and temporal variations, Journal of Environmental Radioactivity, 102, pp. 514–519.
9. Carvalho, F., Fernandes, S., Fesenko, S., Holm, E., Howard, B., Martin, P., Phaneuf, M., Porcelli, D., Pröhl, G. & Twining, J. (2017). The environmental behaviour of polonium technical reports series No. 484. International Atomic Energy Agency Vienna.
10. Długosz-Lisiecka, M. & Bem, H. (2020).Seasonal fluctuation of activity size distribution of 7Be, 210Pb, and 210Poradionuclides in urban aerosols, Journal of Aerosol Science, 144, 105544.
11. Długosz-Lisiecka, M., (2016). The sources and fate of 210Po in the urban air: a review, Environment International, 94, pp.325–330.
12. Długosz-Lisiecka, M., (2019). Chemometric methods for source apportionment of 210Pb, 210Bi and 210Po for 10 years of urban air radioactivity monitoring in Lodz city, Poland, Chemosphere, 220, pp. 163-168.
13. Długosz-Lisiecka, M., (2015). Excess of Polonium-210 activity in the surface urban at-mosphere, Part 1, Fluctuation of the 210Po excess in the air, Environ. Sci.: Processes Impacts, 17(2), pp. 458-464, a.
14. Długosz-Lisiecka, M., (2015). Excess of Polonium-210 activity in the surface urban atmosphere. Part 2. Origin of 210Poexcess, Environ. Sci.: Processes Impacts, 17(2), pp. 465-470, b.
15. Ioannidou, A., Eleftheriadis, K., Gini, M.,Gini, L.,Manenti, S. & Groppi, F.(2019).Activity size distribution of radioactive nuclide 7Be at different locations and under different meteorological conditions. Atmospheric Environment, 212, pp. 272-280.
16. Kaynar, S.Ç., Kaynar ,U.H., Hiçsönmez, Ü. & Sevinç, O.Ü. (2018).Determination of 210Po and 210Pb depositions in lichen and soil samples collected from Köprübaşı-Manisa, Turkey, Nuclear Science and Techniques, 29, DOI: 10.1007/s41365-018-0428-7.
17. Lozano, R. L., San Miguel, E. G. & Bolívar, J. P.(2011).Assessment of the influence of in situ 210Bi in the calculation of in situ 210Po in air aerosols: Implications on residence time calculations using 210Po/210Pb activity ratios, Journal of Geophysical Research, 116, D08206, DOI: 10.1029/2010JD014915.
18. Mertens, J., Lepaumier, H., Rogiers, P., Desagher, D., Goossen,sL., Duterque, A., Le Cadre, E., Zarea,M. & Blondeau, J.(2020).Webber M., Fine and ultrafine particle number and size measurements from industrial combustion processes: Primary emissions field data, Atmospheric Pollution Research, 11, 4, pp. 803-814.
19. Marley, N.A., Gaffney, J. S., Drayton, P.J., Mary, M. Cunningham, K. Orlandini, A. & Paode, R. (2000). Measurement of 210Pb, 210Po and 210Bi in Size-Fractionated Atmospheric Aerosols: An Estimate of Fine-Aerosol Residence Times. Aerosol Science and Technology 32, pp.569- 583.
20. Nowina-Konopka, M. (1993). Radiological hazard from coal-fired power plants in Poland. Radiat. Prot. Dosim. 46 (3), pp. 171–180.
21. Nelson A.W., Eitrheim E.S., Knight A.W., May D. & Schultz M.K. (2017). Polonium-210 accumulates in a lake receiving coal mine discharges—anthropogenic or natural? Journal of Environmental Radioactivity, 167, pp. 211-221.
22. Ozden, B., Gule,r E.,Vaasma, T.,Horvath, M.,Kiisk, M. & Kovacs, T. (2017). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants. Turkey, Journal of Environmental Radioactivity, 188, pp. 100-107.
23. Ozden, B., Vaasma, T., Kiisk, M. & Tkaczyk, A.H. (2016). A modified method for the sequential determination of 210Po and 210Pb in Ca-rich material using liquid scintillation counting, Journal of Radioanalytical and Nuclear Chemistry, 311 (1), pp. 365-373.
24. Ouyang, J., Song, L.-J., Ma, L.-L, Luo, M. & Xu, D.-D. (2018) .Temporal variations, sources and tracer significance of Polonium-210 in the metropolitan atmosphere of Beijing, China, Atmospheric Environment, 193, 2018, pp. 214-223.
25. Pham, M.K., Betti, M., Nies, H. & Povinec, P. (2011).Temporal changes of 7Be, 137Cs and 210Pb activity concentrations in surface air at Monaco and their correlation with mete-orological parameters, Journal of Environmental Radioactivity, 102, 11, pp. 1045-1054.
26. Poluszyńska J. (2020). The content of heavy metal ions in ash from waste incinerated in domestic furnaces. Archives of Environmental Protection , 46 , 2 pp. 68–73
27. Sabuti, A.A. & Mohamed, C.A.R. (2011).Natural Radioisotopes of Pb, Bi and Po in the Atmosphere of Coal Burning Area, Environment Asia, 4, pp. 49-62, DOI: 10.14456/ea.2011.18.
28. Sabuti, A.A. & Mohamed, C.A.R. (2013). Residence time of Pb-210, Bi-210 and Po-210 in the atmosphere around a coal-fired power plant, Kapar, Selangor, Malaysia, Pollution Research, 32, pp. 907-915.
29. Sówka I., Badura M., Pawnuk M., Szymański P. & Batog P. (2020). The use of the GIS tools in the analysis of air quality on the selected University campus in Poland. Archives of Environmental Protection, 46 , 1 pp. 100–106
30. Sýkora, I. & Povinec, P.P. (2020). Natural and anthropogenic radionuclides on aerosols in Bratislava air, Journal of Radioanalytical and Nuclear Chemistry, 325, pp. 245-252, DOI: 10.1007/s10967-020-07219-0
31. Szaciłowski, G., Ośko, J. & Pliszczyński, T. (2019). Determination of 210Po in air filters from metallurgic industry, Journal of Radioanalytical and Nuclear Chemistry, 322, pp. 1351–1356, DOI: 10.1007/s10967-019-06858-2
32. Vaasma, T., Loosaar, J., Gyakwaa, F., Kiisk, M., Özden, B. & Tkaczyk, A.H. (2017). Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants, Environmental Pollution. 222, 210-218.
33. Vecchi, R., Piziali, F.A.,Valli, G., Favaron, M. & Bernardoni, V. (2019). Radon-based estimates of equivalent mixing layer heights: A long-term assessment. Atmospheric Environment, 197, pp. 150-158.
34. Wasielewski R., Wojtaszek M. & Plis A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46, 2 pp. 58–67, DOI: 10.24425/aep.2020.133475
35. Yan G., Cho H.-M., Lee I. & Kim G., (2012). Significant emissions of 210Po by coal burning into the urban atmosphere of Seoul, Korea, Atmospheric Environment, 54, pp. 80-85.
Go to article

Authors and Affiliations

Magdalena Długosz-Lisiecka
Karolina Nowak

  1. Lodz University of Technology, Institute of Applied Radiation Chemistry, Łódź, Poland
Download PDF Download RIS Download Bibtex


The aspects of surface stability and groundwater exchange recognized by many researchers due to the intensification of agriculture and industry (manifested in, e.g., regulation and dredging of riverbed sediments of rivers) are now widely discussed on the international forum of water policy and management. It is essential to assess the spatial variability of water exchange through the river length and cross sections for the preparation of data and calculation of the groundwater flow model. This article presents research which describes the spatial distribution of the surface water-groundwater interaction within the river cross-section. Two measurement series were carried out to describe its variability. Additionally, a groundwater flow model was developed to simulate and represent the variable nature of water exchange in the hyporheic zone in the river’s cross-section. The model was successfully verified by means of measurements of water flux in the hyporheic zone. The precise spatial description of this variability is the first step to determine the possibility of introducing this variable in an accurate manner, within the limits of measurement uncertainties or simulation assumptions, in the construction of mathematical models of groundwater flow.
Go to article


1. Anibas, C., Verbeiren, B., Buis, K., Chormański, J., De Doncker, L., Okruszko, T., Meire, P. & Batelaan, O. (2012). A hierarchical approach on groundwater-surface water interac-tion in wetlands along the upper Biebrza River, Poland. Hydrol. Earth Syst. Sci. , 16, pp. 2329–2346.
2. Baraniecka, M. D., (1976). Description of the detailed geological map of Poland 1:50 000 Sheet Otwock, (in Polish).
3. Boano, F., Camporeale, C., Revelli, R. & Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophys. Res. Lett. , 33.
4. Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L. & Wörman, A. (2014). Hypohreic flow and transport processes: Mechanisms models, and biogeo-chemical implications. Rev. Geophys. , 52, pp. 603–679.
5. Brunetti, E., Jones, J. P., Petitta, M. & Rudolph, D. L. (2013). Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol. J. , 21, pp. 401–423.
6. Brunke, M. & Gonser, T. (1997). The ecological significance of exchange processes be-tween rivers and groundwater. Freshw. Biol. , 37, pp. 1–33.
7. Duda, R., Witczak, S. & Żurek, A. (2011). Map of Polish groundwater sensitivity to pol-lution 1: 500,000 - Methodology and textual explanations. Akademia Górniczo–Hutnicza im. Stanisława Staszica w Krakowie Wydział Geologii, Geofizyki i Ochrony Środowiska, ISBN: 13 978-83-88927-24-9 (in Polish).
8. Elango, L., Brindha, K., Kalpana, L. & Sunny, F. (2012) Groundwater flow and radionu-clide decay-chain transport modelling around a proposed uranium tailings pond in In-dia. Hydrogeol. J. , 20, pp. 797–812.
9. Grodzka-Łukaszewska, M., Nawalany, M. & Zijl, W. (2017). A Velocity-Oriented Ap-proach for Modflow. Transp. Porous Media, 119, pp. 373–390.
10. Grygoruk, M. & Acreman, M. (2015). Restoration and management of riparian and river-ine ecosystems: Ecohydrological experiences, tools and perspectives. Ecohydrol. Hydrobiol. , 15, pp. 109-110.
11. Harvey, J. & Gooseff, M. (2015). River corridor science: Hydrologic exchange and eco-logical consequences from bedforms to basins. Water Resour. Res., 51, pp. 6893–6922.
12. Hendriks, D. M. D., Okruszko, T., Acreman, M., Grygoruk, M., Duel, H., Buijse, T., Schutten, J., Mirosław-Świątek, D., Henriksen, H.J., Sanches-Navarro, R., Broers, H.P., Lewandowski, J., Old, G., Whiteman, M., Johns, T., Kaandorp, V., Baglioni, M., Holgersson, B. & Kowalczyk, A. (2015). Bringing groundwater to the surface; Groundwater-river interactions as driver for river ecology. D77 Policy Discuss. Pap. no 2
13. Hidayat, H. N. & Permana, M. G. (2018). Geothermal reservoir simulation of hot sedi-mentary aquifer system using FEFLOW®. IOP Conference Series: Earth and Envi-ronmental Science, 103, 12002, DOI:
14. IMGW-PIB 2016 Report on the implementation of flood hazard maps and flood risk maps, appendix 1, (in Polish)
15. Iqbal, Z., MacLean, R. T., Taylor, B. D., Hecker, F. J. & Bennett, D. R. (2002). Seepage losses from irrigation canals in southern Alberta. Can. Biosyst. Eng. / Le Genie des Biosyst. au Canada, 44, pp. 21–27
16. Israelsen, O. W. & Reeve, R. C. (1944). Bulletin No . 313 - Canal Lining Experiments in the Delta Area, Utah Canal Lining Experiments - the Delta Area, Utah. UAES Bull 52
17. Janik, B., Kowalik, A. & Marciniak, M. (1989). Infiltrometric measurements as an estima-tion base of the quota of river water in the feeding of the drainage intake Reda-Pieleszewo. Przegląd Geologiczny, 37, pp. 511–516 (in Polish).
18. Jekatierynczuk-Rudczyk, E. (2007). The hyporheic zone, its functioning and meaning. Kosmos. 56, pp. 181-196 (in Polish)
19. Kasperek, R., Mokwa1, M. & Wiatkowski, M. (2012). Modelling of pollution transport with sediment on the example of the Widawa river. Archives of Environmental Protection, 39, 2, pp.29-43, DOI: 10.2478/aep-2013-0017
20. Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries1. Limnol. Oceanogr. , 22, pp. 140–147.
21. Magliozzi, C., Grabowski, R. C., Packman, A. I. & Krause, S. (2018) Toward a concep-tual framework of hyporheic exchange across spatial scales. Hydrol. Earth Syst. Sci., 22, pp. 6163–6185
22. Marciniak, M. & Chudziak, Ł. (2015). A new method of measuring the hydraulic con-ductivity of the bottom sediment. Przegląd Geologiczny, 63, pp. 919-925 (in Polish)
23. Marciniak, M., Szczucińska, A. & Kaczmarek, M. (2017). Variability of the hydraulic conductivity in the hyporheic zone in the light of laboratory research). Przegląd Geologiczny, 65, pp. 1115-1120 (in Polish)
24. McDonald, M. G. & Harbaugh, A. W. (1984). A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Surv.
25. Nawalany, M. (1993). Mathematical Modeling of River-Aquifer Interactions, Report SR 349. HR Wallingford.
26. Pandian, R. S., Nair, I. S. & Lakshmanan, E. (2016). Finite element modelling of a heavi-ly exploited coastal aquifer for assessing the response of groundwater level to the changes in pumping and rainfall variation due to climate change. Hydrol Res., 47, pp. 42–60.
27. Peralta-Maraver, I., Reiss, J. & Robertson, A. L. (2018). Interplay of hydrology, commu-nity ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ., 610–611, pp. 267–275.
28. Pietrzak, K., Przybylski, B., & Repliński, M. (2018). Environmental impact assessment of the Environmental Protection Program for the Latowicz municipality until 2021 (in Polish).
29. Revelli, R., Boano, F., Camporeale, C. & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resour. Res., 44.
30. Robinson, A. R., & Rohwer, C. (1959). Measuring seepage from irrigation channels. USDA Tech. Bull. 1203.
31. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych (Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemi-cal status and on the classification of surface water bodies and environmental quality standards for priority substances) (in Polish)
32. Schmadel, N. M., Ward, A. S. & Wondzell, S. M. (2017). Hydrologic controls on hyporheic exchange in a headwatermountain stream. Water Resour. Res. , 53, pp. 6260-6278.
33. Siergieiev, D., Lundberg, A. & Widerlund, A. (2014). Hyporheic water exchange in a large hydropower-regulated boreal river – directions and rates. Hydrol. Res. , 45, pp. 334–348.
34. Ward, A. S. (2016). The evolution and state of interdisciplinary hyporheic research. WIREs Water, 3, pp. 83–103.
35. Worstell, R. V. & Carpenter, C. D. (1969). Improved Seepage Meter Operation for Lo-cating Areas of High Water Loss in Canals and Ponds. 58th Annu. Oregon Reclam. Congr.
36. Zieliński, P. & Jekatierynczuk-Rudczyk, E. (2010). Dissolved organic matter transfor-mation in the hyporheic zone of a small lowland river. Oceanol. Hydrobiol. Stud. , 39, pp. 97–103.
38. Zijl, W. & Nawalany, M. (1993) Natural groundwater flow. Lewis Publishers
Go to article

Authors and Affiliations

Maria Grodzka-Łukaszewska
Zofia Pawlak
Grzegorz Sinicyn

  1. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex


Currently, due to reduced water resources, there is a need to build reservoirs in Poland. Reservoirs perform important economic, natural and recreational functions in the environment, improve water balance and contribute to fl ood protection. In the construction of reservoirs, it is necessary to consider not only hydrological issues related to water quantity, but also its quality, silting, and many other factors. Therefore, the physiographic, hydrological, hydrochemical, and hydrogeological conditions of the projected reservoirs have to be taken into account to limit the potential negative eff ects of decisions to build them. In order to assess the suitability of eight projected small water retention reservoirs (to increase water resources in the Barycz River catchment in Lower Silesia and Greater Poland provinces, this article takes into account hydrological indicators (efficiency of the reservoir, operation time, dependence on the intensity of silting, and flood hazard indicator), water quality (phosphorus load and nitrogen load), hydrogeological conditions (type of geological substratum for the reservoir basin and filtration losses), and safety of the reservoir dam. To develop a theoretical model describing the regularities between the indicators, multivariate statistical techniques were used, including the Principal Component Analysis (PCA) and the Factor Analysis (FA). In order to assess the reservoirs, a synthetic indicator was developed to compare the reservoirs with each other in relation to the conditions. The Cluster Analysis (CA) was used for typological classification of homogeneous locations of projected small retention reservoirs. Own research procedure for identification of the most advantageous water reservoirs, with the use of multivariate statistical techniques, may be used as a tool supporting decision making in other facilities intended for implementation in provincial projects of small retention.
Go to article


1. Adamski, W., Gortat, J., Leśniak, E. & Żbikowski, A. (1986). Small water construction for the villages. Arkady, Warszawa (in Polish).
2. Bănăduc, D., Razvam, V., Marić, S., Dobre, A. & Bănăduc, A. (2018). Technical Solutions to Mitigate Shifting Fish Fauna Zones Impacted by Long Term Habitat Degradation in the Bistra Mărui River – Study Case, Transylvanian Review of Systematical and Ecological Research, 20(3). DOI: 10.2478/trser-2018-0021.
3. Bartnik, A. & Jokiel, P. (2007). Maximum outflows and flood indexes for European rivers, Water Management/Gospodarka Wodna, (1), pp. 28–32 (in Polish).
4. Baumgartner, M. T., Piana, P. A., Baumgartner, G. & Gomes, L. C. (2019). Storage or Run-of-river Reservoirs: Exploring the Ecological Effects of Dam Operation on Stability and Species Interactions of Fish Assemblages, Environmental Management, DOI: 10.1007/s00267-019-01243-x.
5. Bierman, P. & Steig, E.J. (1996). Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surface Processes and Landforms, 21(2). DOI: 10.1002/(SICI)1096-9837(199602)21:2125::AID-ESP511>3.0.CO;2-8.
6. Bogdał A., Kowalik, T. & Witoszek, K. (2015). Impact of the Goczałkowicki reservoir on changes in water quality in the Vistula River. Inżynieria Ekologiczna, 45, pp. 2015, 124–134, DOI: 10.12912/23920629/60605 (in Polish).
7. Bogdał A., Policht-Latawiec, A. & Kołdras, S. (2015). Changes of Water Quality Indices with Depth at Drinking Water Intake from Dobczyce Reservoir. Annual Set the Environment Protection, 17, pp. 1239–1258 (in Polish).
8. Boyacioglu, H. (2006). Surface water quality assessment using factor analysis. Water SA, 32(3), pp. 389–393. DOI: 10.4314/wsa.v32i3.5264.
9. Boyacioglu, H. (2014). Spatial differentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach. Archives of Environmental Protection, 40(1), 41–50, DOI: 10.2478/Aep-2014-0002.
10. Boyacioglu, H., & Boyacioglu, H. (2008). Water pollution sources assessment by mul-tivariate statistical methods in the Tahtali Basin. Turkey, Environmental Geology, 54(2), 275–282, DOI 10.1007/s00254-007-0815-6.
11. Bus, A. & Mosiej, J. (2018). Water Quality Changes of Inflowing and Outlawing Water from Complex of Niewiadoma Reservoirs Located at Cetynia River. Annual Set The Environment Protection, 20, pp. 1793–1810 (in Polish).
12. Byczkowski, A. (1999). Hydrology, vol. 1, ed. 2. SGGW Publishing House, Warszawa (in Polish).
13. Carlson, R.E. & Simpson, J. (1996). A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society.
14. Chłopek, D. (2018). Multi-criteria analysis of the possibility of implementing small water reservoirs in the Barycz river basin. Diploma thesis, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, pp. 65 (in Polish).
15. Chongxun, M., Fanggui, L. Mei, Y., Rongyong, M. & Guikai, S. (2008), Risk analysis for earth dam overtopping, Water Science and Engineering, 1(2), pp. 76-87, DOI: 10.3882/j.issn.1674-2370.2008.02.008.
16. Ciepielowski, A. (1999). Basics of water management. Publisher SGGW, Warszawa, pp. 328 (in Polish).
17. Cupak, A., Wałęga, A. & Michalec, B. (2017). Cluster analysis in determination of hydrologically homogeneous regions with low flow, Acta Scientiarum Polonorum Formatio Circumiectus, 16(1), pp. 53–63. DOI: 10.15576/ASP.FC/2017.16.1.53
18. Cymes, I. & Glińska-Lewczuk, K. (2016). The use of Water Quality Indices (WQI and SAR) for multipurpose assessment of water in dam reservoirs. J. Elem., 21(4): 1211-1224, DOI: 10.5601/jelem.2016.21.2.1200.
19. Czamara, W., Czamara, A. & Wiatkowski, M. (2008). The use of predams with plants filters to improve water quality in storage reservoirs, Archives of Environmental Protection, 34, pp. 79-89.
20. Degoutte, G. (ed.). (2002). Small dams, guidelines for design, construction and monitoring. Cemagref Éditions and ENGREF (France), with French Committee on Large Dams.
21. Degórski, M. (2018). Circular economy – a new approach in the understanding of the human–environment relationship, [in:] Theoretical and application challenges of contemporary geography socioeconomic, P. Churski (ed.), Studia Komitetu Przestrzennego Zagospodarowania Kraju, Polska Akademia Nauk, Tom CLXXXIII, Warszawa, pp. 27-35 (in Polish).
22. Dodds, W.K. & Smith, V.H. (2016). Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6(2), pp. 155-164, DOI: 10.5268/IW-6.2.909.
23. Dziewoński, Z. (1973). Agricultural storage reservoirs, PWN Publisher (in Polish).
24. DZMiUW Wrocław (2006). Small water retention program in the Lower Silesian Voivodship. Study prepared by Agricultural University of Wroclaw - Hydrological Process Modeling Center (in Polish).
25. EPA – Environmental Protection Agency (1974). An approach to a relative trophic index system for classifying lakes and reservoirs. Working Paper, 24.
26. FitzHugh, T. W., & Vogel, R. M. (2010). The impact of dams on flood flows in the United States, River Research and Applications, 27(10), pp. 1192–1215, DOI: 10.1002/rra.1417.
27. Gaupp, F., Hall, J., & Dadson, S. (2015). The role of storage capacity in coping with intra- and inter-annual water variability in large river basins, Environmental Research Letters, 10(12), 125001, DOI: 10.1088/1748-9326/10/12/125001.
28. GIOŚ (2018) Corine Land Cover – Land Cover / Land Use Database. Chief Inspec-torate for Environmental Protection (GIOŚ).
29. Grimard, Y. & Jones, H.G. (2011). Trophic Upsurge in New Reservoirs: A Model for Total Phosphorus Concentrations, Canadian Journal of Fisheries and Aquatic Sciences, 39(11), pp. 1473-1483, DOI: 10.1139/f82-199.
30. Gruss Ł. & Wiatkowski M. (2018). Rainfall models in small catchments in the context of hydrologic and hydraulic assessment of watercourses. ECO CHEM ENG A. 25(1): 19-27, DOI: 10.2428/ecea.2018.25(1)2.
31. Ignatius, A. R., & Rasmussen, T. C. (2016). Small reservoir effects on headwater wa-ter quality in the rural-urban fringe, Georgia Piedmont, USA, Journal of Hydrolo-gy: Regional Studies, 8, pp. 145–161, DOI: 10.1016/j.ejrh.2016.08.005.
32. Junakova, N. & Junak, J. (2017). Sustainable Use of Reservoir Sediment through Par-tial Application in Building Material, Sustainability, 9(5), DOI: 10.3390/su9050852. 33. Kajak, Z. (2001). Hydrobiology - limnology. Inland water ecosystems. PWN Publisher, Warszawa (in Polish).
34. Kałuża, T., Zawadzki, P., Mądrawski, J., Stasik, R. (2017). Analysis of impact of Strużyna reservoir modernization on groundwater level. Acta. Sci. Pol., Formatio Circumiectus, 16(3), 153–169 (in Polish).
35. Karimian, E., Modares, R., Soltani S., Eslamian S., Ostad-Ali-Askari, K., Vijay, P.S & Dalezios, N.R. (2018). Multivariate and Cluster Analysis of Hydrologic Indices: A Case Study of Karun Watershed, Khuzestan Province, Iran, International Journal of Research Studies in Science, Engineering and Technology, 5(2), pp. 4-13
36. Kasperek R., Wiatkowski M. & Czamara W. (2007). Assessment of sediment transport flowing into the Mściwojów water reservoir. Infrastructure and Ecology of Rural Areas, 4, 2, pp. 69-76 (in Polish).
37. Kasperek, R., Mokwa, M. & Wiatkowski, M. (2013). Modelling of pollution transport with sediment on the example of the Widawa River, Archives of Environmental Protection, 39(2), pp. 29-43, DOI: 10.2478/aep-2013-0017.
38. Khaba, L. & Griffiths, J.A. (2017). Calculation of reservoir capacity loss due to sedi-ment deposition in the `Muela reservoir, Northern Lesotho, International Soil and Water Conservation Research, 5 (2), pp. 130-140. DOI: 10.1016/j.iswcr.2017.05.005.
39. Kubicz, J., Lochynski,, P., Pawełczyk, A. & Karczewski, M. (2021). Effects of drought on environmental health risk posed by groundwater contamination. Chemosphere, 263, 128145, DOI: 10.1016/j.chemosphere.2020.128145.
40. Kostecki, M., Tytła, M., Kernert, J. & Stahl, K. (2017). Temporal and spatial variability in concentrations of phosphorus species under thermal pollution conditions of a dam reservoir – the Rybnik Reservoir case study, Archives of Environmental Protection, 43(3), pp. 42–52, DOI: 10.1515/aep-2017-0022.
41. Kowalewski, Z. (2008). Actions for small water retention undertaken in Poland. J. Water. Land. Dev. No. 12, pp. 155–167.
42. Kundzewicz, Z.W., Ulbrich, U., Brücher, T. et al. (2005). Summer Floods in Central Europe – Climate Change Track?, Natural Hazards, 36, 165–189. DOI: 10.1007/s11069-004-4547-6
43. KZGW (National Water Management Authority) 2017. Hydrographic Map of Poland. Available online: (accessed on: 05.12.2017).
44. Laacha, G. & Blöschl, G. (2006). A comparison of low flow regionalisation methods – catchment grouping, Journal of Hydrology, 323, pp. 193–214. DOI: 10.1016/j.jhydrol.2005.09.001.
45. Łabaz, B., Bogacz, A. & Kabała, C. (2014). Anthropogenic transformation of soils in the Barycz valley –conclusions for soil classification, Soil Science Annual, 65(3/2014), pp. 103-110. DOI: 10.1515/ssa-2015-0001.
46. Larinier, M. (2008). Fish Passage Experience at Small-Scale Hydro-Electric Power Plants in France, Hydrobiologia, 609(1). DOI: 10.1007/s10750-008-9398-9.
47. Lewis, S.E., Bainbridge, Z.T., Kuhnert, P.M., Sherman, B.S., Henderson, B., Dougall, C., Cooper, M. & Brodie, J.E. (2013). Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Dam, NE Australia, Water Resources Research, 49(2), pp. 1017-1029. DOI: 10.1002/wrcr.20117.
48. Lindsey, C.R., Ghanashym, N., Spycher, N., Fairley, J.P., Dobson, P., Wood, T., McLing, T. & Conrad, M. (2018). Cluster analysis as a tool for evaluating the exploration potential of Known Geothermal Resource Areas, Geothermics, 72, pp. 358-370. DOI: 10.1016/j.geothermics.2017.12.009
49. Ling, T.Y., Soo, C-L, Liew, J-J., Nyanti, L, Sim, S.F. & Grinang, J. (2017). Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river J. Chemother., pp. 1-13, DOI: 10.1155/2017/5737452
50. Madeyski M., Michalec, B. & Tarnawski, M. (2008). Silting of small water reservoirs and quality of sediments, Infrastructure and Ecology of Rural Areas, 11 (monography; in Polish).
51. Maloney, T.E. (1979). Lake and Reservoir Classification Systems. United States Environmental Protection Agency.
52. Mansanarez, V., Westerberg, I.K., Lam, N. & Lyon, S.W. (2019). Rapid Stage‐Discharge Rating Curve Assessment Using Hydraulic Modeling in an Uncertainty Framework, Water Resources Research, 55(11). DOI: 10.1029/2018WR024176.
53. Marcinkowski, P., Piniewski, M., Kardel, I., Szczęśniak, M., Benestad, R.E., Sriniva-san, R., Ignar, S. & Okruszko, T. (2017). Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland, Water, 9, 156, DOI: 10.3390/w9030156.
54. Markowska, J., Szalińska, W., Dąbrowska, J. & Brząkała, M. (2020). The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manage. 259:109626. DOI: 10.1016/j.jenvman.2019.109626
55. Melo, D.C.D., Scanlon, B.R., Zhang, Z., Wendland, E. & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil, Hydrology and Earth System Sciences, 20, pp. 4673-4688, DOI: 10.5194/hess-20-4673-2016.
56. MGMiŻG, (2019a), Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies as well as environmental quality standards for priority substances, OJ 2019, item 2149 (in Polish).
57. MGMiŻG, (2019b), Ministry of Maritime Economy and Inland Navigation. Assumptions for the Program for Combating Water Shortage for 2021-2027 with a perspective to 2030. Project, Warszawa, pp. 19 (in Polish).
58. Miąsik M., Koszelnik P. & Bartoszek L. (2014). Trophic water assessment of the small retention reservoirs Blizne and Cierpisz in the Podkarpacie Region (Subcarpathian Province), Limnol. Rev. , 14(, 4), pp. 181-186. DOI 10.1515/limre-2015-0008.
59. Michalec, B., Wałęga, A., Cupak, A., Michalec, A. & Połoska-Wróblel, A. (2016). Determination of the flow rate curve in the back section of water reservoirs in Zesławice. Acta Scientiarum Polonorum Formatio Circumiectus, 15(1), pp. 113–124.
60. Mioduszewski, W. (2014). Water management in rural areas in the light of new challenges. Wiadomości Melioracyjne i Łąkarskie, 1, pp. 2-9 (in Polish).
61. Mioduszewski, W. (2014). Small (natural) water retention in rural areas. J. Water. Land. Dev., No. 20 (I–III), pp. 19–29.
62. Mosisch, T.D. & Arthington, A. (2006). The impacts of power boating and water ski-ing on lakes and reservoirs, Lakes & Reservoirs Research & Management, 3(1), pp. 1-17, DOI: 10.1111/j.1440-1770.1998.tb00028.x.
63. Moss, B. (2007). The art and science of lake restoration, Hydrobiologia, 581, pp. 15-24. DOI: 10.1007/s10750-006-0524-2.
64. Myronidis, D., Fotakis, D., Ioannou, K. & Sgouropoulou, K. (2018). Comparison of ten notable meteorological drought indices on tracking the effect of drought on streamflow. Hydrological Science Journal, DOI: 10.1080/02626667.2018.1554285
65. Myronidis, M. & Ivanova, E. (2020). Generating Regional Models for Estimating the Peak Flows and Environmental Flows Magnitude for the Bulgarian-Greek Rhodope Mountain Range Torrential Watersheds, Water, 12, 784. DOI: 10.3390/w12030784
66. National Water Policy Project (2011) until 2030 (including the stage of 2016), Ministry of the Environment, National Water Management Authority, Warszawa, pp. 74 (in Polish).
67. O’Keeffe, J., Marcinkowski, P., Utratna, M., Piniewski, M., Kardel, I., Kundzewicz, Z.W. & Okruszko, T. (2019). Modelling Climate Change’s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland. Water, 11, 2191, DOI: 10.3390/w11102191.
68. Özdemir, Ö. (2016). Application of multivariate statistical methods for water quality assessment of Karasu Sarmisakli Creeks and Kizilirmak River in Kayseri, Turkey. Polish Journal of Environmental Studies, 25 (3), 1149.
69. Panek, T. & Zwierzchowski, J. (2013). Statistical methods of multivariate compara-tive analysis. Theory and applications, SGH Publishing House, Warszawa, pp. 400 (in Polish).
70. Paruch, A.M., Mæhlum, T. & Robertson, L. (2015). Changes in Microbial Quality of Irrigation Water Under Different Weather Conditions in Southeast Norway. Environ. Process. 2, pp. 115–124. DOI: 10.1007/s40710-014-0054-2
71. Pazdro, Z. & Kozerski, B. (1990). General hydrogeology, Geological Publishing, Edition 4th, Warszawa (in Polish).
72. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques, International Journal of Environmental Science and Technology, 6, 3, pp. 467–476. DOI: 10.1007/BF03326086.
73. Przybyła, C., Kozdroj, P. & Sojka, M. (2015). Application of Multivariate Statistical Methods in Water Quality Assessment of River-reservoirs Systems (on the Example of Jutrosin and Pakoslaw Reservoirs, Orla Basin), Annual Set the Environment Protection, 17(2), pp. 1125-1141.
74. Rao, A.R. & Srinivas, V.V. (2008). Regionalization of Watersheds. An approach based on cluster analysis. Springer, New York.
75. Sakamoto, M. (1966). Primary production by phytoplankton community in some Japa-nese lakes and its dependence on lake depth, Archiv für Hydrobiologie, 62, pp. 1–28.
76. Sand-Jensen, K., Bruun, H.H. & Baastriup-Spohr, L. (2016). Decade‐long time delays in nutrient and plant species dynamics during eutrophication and re‐oligotrophication of Lake Fure 1900–2015, Journal of Ecology, 105(3), DOI: 10.1111/1365-2745.12715.
77. Schiozer, D.J, Ligero, E.L. & Santos, J.A.M. (2004). Risk assessment for reservoir de-velopment under uncertainty, Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 26(2), DOI: 10.1590/S1678-58782004000200014.
78. Shrestha, S. & Kazama, F. (2007). Assessment of Surface Water Quality using Multi-variate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environmental Modelling & Software, 22(4), 464–475, DOI: 10.1016/j.envsoft.2006.02.001.
79. Singh, K. P., Malik, A., Singh V. K., Mohan, D. & Sinha, S. (2005). Chemometric Da-ta Analysis of Pollutants in wastewater - a Case Study. Analytica Chimica Ac-ta, 550, 82–91. DOI: 10.1016/j.aca.2004.10.043.
80. Sojka, M., Jaskuła, J., Siepak, M. (2019). Article Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk, Water, 11, 56, DOI: 10.3390/w11010056.
81. Stathis, D., Myronidis, D. (2009). Principal component analysis of precipitation in Thessaly region (Central Greece). Global NEST Journal, Vol. 11 (4), pp. 467-476,
82. StatSoft, Electronic Statistics Textbook. 2011. Available on: (accessed on January 2020).
83. Szatten, D., Habel, M., Pellegrini, L. & Maerker, M. (2018). Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas, Water, 10, 1681. DOI: 10.3390/w10111681.
84. Szoszkiewicz K., Wicher-Dysarz J., Sojka, M. & Dysarz, T. (2016). Assessment of hydraulic, hydrological and physicochemical factors affecting vegetation development in dam reservoir with separated inlet zone - stare miasto (Central Poland) reservoir as a case study. Fresenius Environmental Bulletin. Vol. 25, No.( 8), pp. 2772-2783.
85. Tallar, R. & Suen, J-P. (2017). Measuring the Aesthetic Value of Multifunctional Lakes Using an Enhanced Visual Quality Method, Water, 9(4), DOI: 10.3390/w9040233.
86. Tokarczyk-Dorociak, K., Gębarowski, S. (2011). Implementation of Water Frame-work Directive in Barycz river basin,. Infrastruktura i Ekologia Terenów Wiejskich 10, pp. 15-27 (in Polish).
87. Tokarczyk, T. & Szalińska, W. (2018). Drought hazard assessment in the process of drought risk management . Acta Sci. Pol., Formatio Circumiectus, 18(3), 217–229. DOI: 10.15576/ASP.FC/2018.17.3.217.
88. Varol, M., Gökot, B., Bekleyen, A. & Şen, B. (2012). Water quality assessment and apportionment of pollution sources of Tigris river (Turkey) using multivariate statistical techniques – a case study, River Research and Applications, 28, pp. 1428–1438, DOI: 10.1002/rra.1533.
89. Vollenweider, R.A. (1965). Material and ideas for a hydrochemistry of water, Memorie dell'Istituto Italiano di Idrobiologia, 19, pp. 213-286 (in Italian).
90. Vollenweider, R.A. (1992). The relationship between phosphorus load and eutrophication response in Lake Vanda, Physical and Biogeochemical Processes in Antarctic Lakes, 59, DOI: 10.1029/AR059p0197.
91. Voza, D., Vuković, M., Takić, L.J., Nikolić, D.J. & Mladenović-Ranisavljević, I. (2015) Application of multivariate statistical techniques in the water quality assessment of Danube river, Serbia. Archives of Environmental Protection, 41(4), pp. 96–103. DOI 10.1515/aep-2015-0044.
92. Waligórski B., Sojka M., Jaskuła J. & Korytowski M. (2018). Analysis of the use of se-lected reservoirs in the Wielkopolska province. Ann. Warsaw Univ. of Life Sci. – SGGW, Land Reclam. 50 (4), 2018). DOI: 10.2478/sggw-2018-0029.
93. Wiatkowska, B. & Słodczyk, J. (2018). Spatial Diversity of Environmental Govern-ance in the Aspect of Sustainable Development of the Polish-Czech Border Area, [in:] Development and administration of border areas of the Czech Republic and Poland. Support for sustainable development, VŠB – Technical University of Ostrava, pp. 292–301.
94. Wiatkowski, M. & Paul, L. (2009). Surface water quality assessment in the Troja river catchment in the context of Włodzienin reservoir construction. Polish Journal of Environmental Studies,. Vol. 18, 5, pp. 923-929.
95. Wiatkowski, M. & Czerniawska-Kusza, I. (2009). Use of Jedlice preliminary reservoir for water protection of Turawa dam reservoir. Oceanological and Hydrobiological Studies, vol. XXXVIII, 1, pp. 83-91.
96. Wiatkowski, M. (2010). Impact of the small water reservoir Psurów on the quality and flows of the Prosna river. Archives of Environmental Protection, vol. 36, 3, pp. 83-96.
97. Wiatkowski, M., Rosik-Dulewska, C., Kuczewski, K. & Kasperek, R. (2013). Water Quality Assessment of Włodzienin Reservoir in the First Year of Its Operation, Annual Set The Environment Protection, 15(3), pp. 2666-2682 (in Polish).
98. Wiatkowski M., Rosik-Dulewska, C. & Kasperek R. (2015). Inflow of Pollutants to the Bukówka Drinking Water Reservoir from the Transboundary Bóbr River Basin. Annual Set The Environment Protection, 17, pp. 316-336.
99. Wiatkowski, M., & Rosik-Dulewska, C. (2015). Water management problems at the Bukówka drinking water reservoir's cross-border basin area in terms of its established functions. J. Ecol. Eng. , 16(2), pp. 52–60. DOI: 10.12911/22998993/1857.
100. Wiatkowski, M., Gruss, Ł., Tomczyk, P. & Rosik-Dulewska, C. (2018). Analy-sis of water quality of the Stobrawa river at the location of the Walce small retention reservoir. Annual Set The Environment Protection, Vol. 20, pp. 184-202.
101. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis. Archives of Environmental Protection, 45, 1, pp. 26–41. DOI: 10.24425/aep.2019.126339.
102. Wilk, P. & Grabarczyk, A. (2018). The effect of selected inviolable flow char-acteristics on the results of environmental analysis using the example of river absorp-tion capacity Archives of Environmental Protection, 44(2), pp. 14-25. DOI: 10.24425/119702.
103. WIOŚ (Regional Inspectorate for Environmental Protection) (2011, 2013, 2015, 2016). Report on the state of the environment in the Dolnośląskie and Wielkopolskie voivodships, Wrocław, Poznań.
104. Wu, J., Liu, Z., Yao, H., Chen, X., Chen, X., Zheng, Y., & He, Y. (2018). Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought, Journal of Hydrology, 563, pp. 726–736, DOI: 10.1016/j.jhydrol.2018.06.053.
105. WZMiUW (Provincial Board of Land Reclamation and Water Facilities) Poznań (2015). Program małej retencji wodnej w województwie wielkopolskim na lata 2016–2030. Study prepared by Bureau for Land Reclamation and Environmental Engineering Biprowodmel Ltd (in Polish).
106. Żmuda R., Szewrański S., Kowalczyk T., Szarawarski Ł. & Kuriata M. (2009). Landscape alteration in view of soil protection from water erosion - an example of the Mielnica watershed, Journal of Water and Land Development, 13a, pp. 161-175.

Go to article

Authors and Affiliations

Mirosław Wiatkowski
Barbara Wiatkowska
Łukasz Gruss
Czesława Rosik-Dulewska
Paweł Tomczyk
Dawid Chłopek

  1. Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
  2. University of Opole, Institute of Socio-Economic Geography and Spatial Management, Poland
  3. Institute of Environmental Engineering Polish Academy of Sciences in Zabrze
Download PDF Download RIS Download Bibtex


Variability of stress proteins concentration in caged carp exposed to transplantation experiment model dam reservoir was caused only by natural (climatic and biological) conditions. Thus, the reference data of stress proteins concentration range in young carp individuals were obtained. Metallothionein, HSP70 and HSP90 protein concentrations as biomarkers were assayed in the livers, gills and muscles of six-month-old (summer) or nine-month-old (autumn) carp individuals in relation to the site of encaging, season (summer or autumn), the term of sampling (1, 2 or 3 weeks after the transplantation) and tissue. Physicochemical analyses of the condition of water as well as pollution detection were conducted during each stage of the experiment. As the result of this study, the range of the variability of the stress protein concentration in young carp individuals was obtained. According to the analyses of the aquatic conditions of a reservoir with no detectable pollutants, we conclude that the variability in the stress protein concentration levels in the groups that were compared is solely the result of the natural conditions. Future regular monitoring of the reservoir using the transplantation method and young carp individuals will be both possible and reliable. Moreover, the range of variability in the stress protein concentrations that were measured in the young C. carpio individuals acquired from the model dam reservoir in relation to all of the studied factors may be applied in the monitoring of any other similar reservoir.
Go to article


1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-Faceted Environmental Analysis to Improve the Quality of Anthropogenic Water Reservoirs (Paprocany Reservoir Case Study). Sensors, 20,2626, DOI: 10.3390/s20092626.
2. Ahmad M., Zuberi, A., Ali M., Sye A., ul Hassan Murtaza M, Khan A. & Kamran M. (2020). Effect of acclimated temperature on thermal tolerance, immune response and expression of HSP genes in Labeo rohita, Catla catla and their intergeneric hybrids. Journal of Thermal Biology, 89, 102570, DOI: 10.1016/j.jtherbio.2020.102570.
3. Allert, A.L., DiStefano, R.J., Fairchild, J.F., Schmitt, C.J. McKee, M.J., Girondo, J.A., Brumbaugh, W.G. & May, T.W. (2013). Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA. Ecotoxicology, 22, pp. 506–521, DOI: 10.1007/s10646-013-1043-3.
4. Antonopoulou, E., Chatzigiannidou, I., Feidantsis, K., Kounna, C. & Chatzifotis, S. (2020). Effect of water temperature on cellular stress responses in meagre (Argyrosomus regius). Fish Physiol Biochem 46, pp.1075–1091, DOI: 10.1007/s10695-020-00773-0.
5. Barton, B.A. (2002). Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, pp. 517–525, DOI: 10.1093/icb/42.3.517.
6. Barton, B.A., & Iwama, I.W. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, pp. 3–26, DOI: 10.1016/0959-8030(91)90019-G.
7. Beltramini, M., Zambenedetti, P., Wittkowski, W. & Zatta, P. (2004). Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res. 1013: pp. 134–141.
8. Bernet, D., Schmidt-Posthaus, H., Wahli, T. & Burkhardt-Holm, P. 2000. Effects of wastewater on fish health: an integrated approach to biomarker responses in brown trout (Salmo trutta L.). J. Aquat. Ecos. Stress Recov., 8, pp. 143–151, DOI: 10.1023/A:1011481632510.
9. Bilnik, A., Świercz, T. & Siudy, A. (2004). Zbiornik Goczałkowicki wczoraj i dziś. Górnośląskie przedsiębiorstwo wodociągów w Katowicach, Goczałkowice; (Goczałkowice Reservoir yesterday and today. Silesian Waterworks Plc in Katowice, Goczałkowice; ).
10. Bougas, B., Normandeau E, Grasset J., Defo M.A., Campbell, P.G.C., Couture P. & Bernatchez L.(2016). Transcriptional response of yellow perch to changes in ambient metal concentrations—A reciprocal field transplantation experiment. Aquat. Toxicol., 173, pp. 132-142, DOI: 10.1016/j.aquatox.2015.12.014.
11. Bradford, M.M. (1976). Rapid and sensitive method for the quantitation of mikrogram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem., 172, pp. 248–254, DOI: 10.1006/abio.1976.9999.
12. Brylińska, M. (2000). Ryby słodkowodne Polski. Karp. Wydawnictwo Naukowe PWN, Warszawa. Conte, F.S. (2004). Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci., 86, pp. 205–223, DOI: 10.1016/j.applanim.2004.02.003.
13. Coyle, P., Philcox, J.C., Carey, L.C. & Rofe, A.M. (2002). Metallothionein: The multipurpose protein. Cell. Mol. Life Sci., 59, pp. 627–647, DOI: 10.1007/s00018-002-8454-2.
14. Cretì, P., Trinchella, F. & Scudiero, R. (2010). Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Fish Physiol. Biochem., 36, pp. 101–107, DOI: 10.1007/s10661-009-0948-z.
15. Crivelli, A.J. (1981). The biology of the common carp, Cyprinus carpio L. in the Camargue, southern France . J. Fish Biol. 18, pp. 271–290, DOI: 10.1111/j.1095-8649.1981.tb03769.x.
16. Crowther, J.R. (2009). The ELISA Guidebook 2-nd ed. Springer-Verlag Gmbh.
17. Dang, ZC, Berntssen, M.H.G., Lundebye, A.K., Flik, G., Wendelaar Bonga, S.E. & Lock, R.A.C. (2001). Metallothionein and cortisol receptor expression in gills of Atlantic salmon, Salmo salar, exposed to dietary cadmium. Aquat. Toxicol. 53, pp. 91–101, DOI: 10.1016/s0166-445x(00)00168-5.
18. Mazon, F.A, Nolan, DT, Lock, R.A.C., Bonga, W.S.E. & Fernandes, M.N. (2007). Opercular epithelial cells: A simple approach for in vitro studies of cellular responses in fish. Toxicology, 230, pp. 53–63, DOI: 10.1016/j.tox.2006.10.027.
19. Dou, X., Tian, X., Zheng, Y., Huang, J., Shen, Z., Li, H., Wang, X., Mo, F., Wang, W., Wang, S. & Shen, H. (2014). Psychological stress induced hippocampus zinc dyshomeostasis and depression-like behavior in rats. Behav. Brain Res. 273, pp. 133–138, DOI: 10.1016/j.bbr.2014.07.040.
20. El-Khayat, H.M.M., Abu Taleb, H.M., Helal, N.S. & Ghoname, S.I. (2020). Assessment of metallothionein expression in Biomphalaria alexandrina snails and Oreochromis niloticus Fish as a biomarker for water pollution with heavy metals. Egyptian Journal of Aquatic Biology and Fisheries, 24, pp. 209-223, DOI: 10.21608/ejabf.2020.80032.
21. Ellis, J., Cummings, V., Hewitt, L., Thrush, S. & Norkko, A. (2002). Determining effects of suspended sediment on condition of a suspension feeding bivalve (Atrina zelandica): results of a survey, a laboratory experiment and a field transplant experiment. J. Exp. Mar. Biol. Ecol., 267, pp. 147–174, DOI: 10.1016/S0022-0981(01)00355-0.
22. Esyakova, O.A & Voronin V.M. (2020). Bioindication methods in environmental engineering. IOP Conf. Ser.: Mater. Sci. Eng. 862 062009, DOI: 10.1088/1757-899X/862/6/062009.
23. Fåhræus-Van Ree, G.E. & Payne, J.F. (2005). Endocrine disruption in the pituitary of white sucker (Catostomus commersoni) caged in a lake contaminated with iron-ore mine tailings. Hydrobiologia, 32, pp. 221–224, DOI: 10.1007/s10750-004-9017-3.
24. Falfushynska, H.I., Romanchuk, L.D. & Stolyar, O.B. (2005). Seasonal and spatial comparison of metallothioneins in frog Rana ridibunda from feral populations. Ecotoxicology 17, pp. 781–788, DOI: 10.1007/s10646-008-0229-6.
25. Falfushynska, H.I. & Stolyar, O.B. (2009). Responses of biochemical markers in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotox. Environ. Safe., 72, pp. 729–736. DOI: 10.1016/j.ecoenv.2008.04.006.
26. FAO. Fishstat plus (v. 2.30). FAO, Rome; 2007
27. Fernández-Delgado, C. (1990). Life history patterns of the common carp, Cyprinus carpio, in the estuary of Guadalquivir river in south-west Spain. Hydrobiologia, 206, pp. 19–28, DOI: 10.1007/BF00018966.
28. Gandar, A., Jean, S., Canal J., Marty-Gasset, N., Gilbert, F. & Laffaille, P. (2016). Multistress effects on goldfish (Carassius auratus) behavior and metabolism. Environ Sci Pollut Res 23, pp. 3184–3194, DOI: 10.1007/s11356-015-5147-6
29. Guinot, D Ureńa, R., Pastor, A., Varó, I, del Ramo, J. & Torreblanca, A. (2010). Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata. Chemosphere, 87, pp. 1215–1221, DOI: 10.1016/j.chemosphere.2012.01.020.
30. Higashimoto, M., Sano, M., Kondoh, M. & Sato, M. (2002). Different responses of metallothionein and leptin induced in the mouse by fasting stress. Biol. Trace Elem. Res., 75, pp: 75–84, DOI: 10.1385/BTER:89:1:75.
31. Hybská, H., Mitterpach, J., Samešová, D., Schwarz M., Fialová, J. & Veverková D. (2018). Assessment of ecotoxicological properties of oils in water. Archives of Environmental Protection, 44(4), pp. 31-37. DOI: 10.24425/aep.2018.122300
32. Hyllner, S.J., Andersson, T., Haux, C. & Olsson, P.E. (1989). Cortisol induction of metallothionein in primary culture of rainbow trout hepatocytes. J. Cell Physiol., 139, pp. 24–28, DOI: 10.1002/jcp.1041390105.
33. Kamel, N., Burgeot, T., Banni, M., Chalghaf, M., Devin, S., Minier, C. & Boussetta, H. (2014). Effects of increasing temperatures on biomarker responses and accumulation of hazardous substances in rope mussels (Mytilus galloprovincialis) from Bizerte lagoon. Environ. Sci. Pollut. R., 21, pp. 6108–6123. DOI: 10.1007/s11356-014-2540-5.
34. Kazour, M. & Amara, R. (2020). Is blue mussel caging an efficient method for monitoring environmental microplastics pollution? Science of The Total Environment, 710, 135649. DOI: 10.1016/j.scitotenv.2019.135649
35. Klobučar, G.I.V., Štambuk, A.S., Pavlica, M., Sertić Perić, M., Kutuzović Hackenberger, B. & Hylland, K. (2010). Genotoxicity monitoring of freshwater environments using caged carp (Cyprinus carpio). Ecotoxicology 19, pp. 77–84, DOI: 10.1007/s10646-009-0390-6.
36. Köprücü, K. & Rahmi, A. 2004. The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic. Biochem. Phys. 80, pp. 47–53, DOI: 10.1016/j.pestbp.2004.05.004.
37. Langston, W.J., Chesman, B.S., Burt, G.R., Pope, N.D. & McEvoy, J. (2002). Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar. Environ. Res., 53, pp. 263–293, DOI: 10.1016/S0141-1136(01)00113-1.
38. Ming, Y., Chenyuan, P., Jun, B. & Kejian, W. 2014. Regulation of metallothionein gene expression in response to benzo[a]pyrene exposure and bacterial challenge in marine cultured black porgy (Acanthopagrus schlegelii). Chin. J. Geochem. 33, pp. 404–410, DOI 10.1007/s11631-014-0705-z.
39. Mocchegiani, E., Giacconi, R., Cipriano, C., Gasparini, N., Orlando, F., Stecconi, R., Muzzioli, M., Isani, G. & Carpene, E. (2002). Metallothioneins (I+II) and thyroid–thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech. Ageing Dev., 123, pp. 675–694, DOI: 10.1016/S0047-6374(01)00414-6.
40. Oikari, A. (2006). Caging techniques for field exposures of fish to chemical contaminants. Aquat. Toxicol., 78, pp. 370–81, DOI: 10.1016/j.aquatox.2006.03.010.
41. Osman, A.G.M., Wuertz, S. & Mohammed-Geba, K. (2019). Lead-induced heat shock protein (HSP70) and metallothionein (MT) gene expression in the embryos of African catfish Clarias gariepinus (Burchell, 1822). Scientific African 3, e00056.
42. Park, M.S., Shin, H.S., Lee, J., Kil, G.S. & Choi, C.Y. (2010). Influence of quercetin on the n physiological response to cadmium stress in olive flounder, Paralichthys olivaceus: effects on hematological and biochemical parameters Mol. Cell. Toxicol., 6, pp. 151–159. DOI: 10.1007/s13273-010-0022-5.
43. Rahman, M.M., Kadowaki, S., Balcombe, S.R. & Wahab, A. (2010). Common carp (Cyprinus carpio L.) alters its feedingiche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, pp. 303–309, DOI: 10.1007/s11284-009-0657-7.
44. Schofield, P.J., Loftus, W.F., Kobza, M.R., Cook, M.I. & Slone, D.H. (2010). Tolerance of nonindigenous cichlid fishes (Cichlasoma urophthalmus, Hemichromis letourneuxi) to low temperature: laboratory and field experiments in south Florida. Biol. Invasions, 12, pp. 2441–2457.
45. Shaw, J.P., Large, A.T., Livingstone, D.R., Doyotte, A., Renger, J., Chipman, J.K. & Peters, L.D. (2002). Elevation of cytochrome P450-immunopositive protein and DNA damage in mussels (Mytilus edulis) transplanted to a contaminated site. Mar. Environ. Res, 54, pp. 505–509, DOI: 10.1016/S0141-1136(02)00191-5 .
46. Shi, J., Li X, He, T., Wang ,J., Wang, Z., Li, P., Lai Y, Sanganyado, E. & Liu, W. (2018). Integrated assessment of heavy metal pollution using transplanted mussels in eastern Guangdong, China. Environmental Pollution, 243(A), pp. 601-609, DOI: 10.1016/j.envpol.2018.09.006.
47. Sogawa, N., Sogawa, C.A., Fukuoka, H., Mukubo, Y., Yoneyama, T., Okano, Y., Furuta, H. & Onodera, K. (2003). The changes of hepatic metallothionein synthesis and the hepatic damage induced by starvation in mice. Method. Find. Exp. Clin., 25, pp. 601–606, DOI: 10.1358/mf.2003.25.8.778079.
48. Tarnawska, M., Augustyniak, M., Łaszczyca, P., Migula, P., Irnazarow, I., Krzyżowski, M. & Babczyńska, A. (2019). Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. Fish & Shellfish Immunology, 88, pp. 17-27, DOI: 10.1016/j.fsi.2019.02.049.
49. Tian, X., Zheng, Y., Li, Y., Shen, Z., Tao, L., Dou, X., Qian, J. & Shen, H. (2014). Psychological stress induced zinc accumulation and up-regulation of ZIP14 and metallothionein in rat liver. BMC Gastroenterol. 14, 32. DOI: 10.1186/1471-230X-14-32
50. Todd, A.S., McKnight, D.M., Jaros, C.L. & Marchitto, T.M. (2007). Effects of Acid Rock Drainage on Stocked Rainbow Trout (Oncorhynchus mykiss): An In-Situ, Caged Fish Experiment. Environ. Monit. Assess., 130, pp. 111-127, DOI: 10.1007/s10661-006-9382-7
51. Traven, L., Mićović, V., Vukić Lušić, D. & Smital, T. (2013). The responses of the hepatosomatic index (HSI), 7-ethoxyresorufin-O-deethylase (EROD) activity and glutathione-S-transferase (GST) activity in sea bass (Dicentrarchus labrax, Linnaeus 1758) caged at a polluted site: implications for their use in environmental risk assessment. Environ. Monit. Assess., 185, pp. 9009-9018, DOI: 10.1007/s10661-013-3230-3.
52. Ulańczyk R., Klis Cz., Bartosz Łozowski B., Babczynska A., Woźnica A., Długosz J. & Wilk-Wozniak, E. (2021). Phytoplankton production in relation to simulated hydro- and thermodynamics during a hydrological wet year – Goczałkowice reservoir (Poland) case study. J. Ecol. Ind., 121, 106991. DOI: 10.1016/j.ecolind.2020.106991
53. Van Cleef, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). The relationship between reproductive status and metallothionein mRNA expression in the common killifish, Fundulus heteroclitus. Environ. Biol. Fish. 57, pp. 97-105, DOI: 10.1023/A:1007579718536.
54. Van Cleef-Toedt, K.A., Kaplan, L.A.E. & Crivello, J.F. (2000). Metallothionein mRNA expression in spawning and non-spawning Fundulus heteroclitus following acute exposure to starvation and waterborne cadmium. Fish Physiol. Biochem., 22, pp. 319–327, DOI: 10.1023/A:1007854106269.
55. Vašák, M. & Meloni, G. 2011. Chemistry and biology of mammalian metallothioneins. J. Biol. Inorg. Chem. 16, pp. 1067-78, DOI: 10.1007/s00775-011-0799-2.
56. Walker, C.J., Gelsleichter. J., Adams, D.H. & Manire, C.A. (2014). Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo. Fish Physiol. Biochem., 40, pp. 1361-1371, DOI: 10.1007/s10695-014-9930-y.
57. Werner, J., Wautier, K., Evans, R.E., Baron, C.L., Kidd, K. & Palace, V. (2003). Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat. Toxicol., 62, pp. 321-328, DOI: 10.1016/S0166-445X(02)00104-2.
58. Wu, R.S.S., & Shin, P.K.S. (1998). Transplant experiments on growth and mortality of the fan mussel Pinna bicolor. Aquaculture 163, pp. 47-62,
59. Yukawa, S., Yustiawati, Syawal, M.S., Kobayashi, K., Hosokawa, T., Saito, T., Tanaka, S. & Kurasaki, M. (2014). Contents of hepatic and renal metallothioneins in Hyposarcus pardalis: for construction of biomarker for heavy metal contamination in environments. Environ. Earth Sci., 71, pp.1945-1952, DOI: 10.1007/s12665-013-2600-z.
60. Załęska-Radziwiłł, M., Łebkowska, M., Affek, K. & Zarzeczna, A. (2011). Environmental risk assessment of selected pharmaceuticals present in surface water in relation to animals. Archives of Environmental Protection, 37(3), pp. 31-42.
61. Zgórska, A., Arendarczyk, A.& Grabińska-Sota, E. 2011. Toxicity assessment of hospital wastewater by the use of a biotest battery. Archives of Environmental Protection, 37(3), pp. 55-61.
62. [November 25, 2020]
63. [November 25, 2020]
Go to article

Authors and Affiliations

Agnieszka Babczyńska
Monika Tarnawska
Piotr Łaszczyca
Paweł Migula
Bartosz Łozowski
Andrzej Woźnica
Ilgiz Irnazarow
Maria Augustyniak

  1. Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
  2. Institute of Ichtyobiology and Aquaculture in Gołysz, Polish Academy of Sciences, Poland

Instructions for authors

Instrukcja dla Autorów
Archives of Environmental Protection jest kwartalnikiem wydawanym wspólnie przez Instytut Podstaw Inżynierii Środowiska PAN oraz Komitet Inżynierii Środowiska PAN. Dzięki współpracy z gronem wybitnych naukowców z całego świata, chcemy oddawać w ręce czytelników starannie wyselekcjonowane, najciekawsze i najbardziej wartościowe teksty, prezentujące najnowszy stan badań w zakresie inżynierii i ochrony środowiska.
Zakres tematyczny
W czasopiśmie publikowane są przede wszystkim oryginalne prace badawcze, dotyczące takich zagadnień jak:
- Ocena jakości powietrza oraz jego oczyszczanie, ochrona przed zanieczyszczeniem powietrza;
- Technologie oczyszczania ścieków oraz przeróbki osadów ściekowych;
- Technologie w gospodarce odpadami w zakresie unieszkodliwiania/odzysku;
- Hydrologia, ocena jakości wód, oczyszczanie wód;
- Ochrona, rewitalizacja i remediacja gleb;
- Przemiany i transport zanieczyszczeń organicznych/nieorganicznych w środowisku;
- Techniki pomiarowe stosowane w inżynierii i monitoringu środowiska;
- Inne zagadnienia wiążące się bezpośrednio z inżynierią i ochroną środowiska.
Przyjmujemy również prace przeglądowe mające charakter „critical review”, czyli krytycznego przeglądu aktualnego stanu wiedzy na dany temat związany bezpośrednio z tematyką ochrony i inżynierii środowiska.
W przypadku braku pewności czy Państwa artykuł mieści się w zakresie tematycznym czasopisma, prosimy o przesłanie abstraktu na adres mailowy:
Przygotowanie artykułu
Materiały przekazywane do redakcji powinny być przygotowane zgodnie z podanymi niżej wytycznymi:
• Całość artykułu (wraz z rysunkami, tabelami, streszczeniem oraz bibliografią) nie powinna przekraczać objętości 20 stron. W przypadku przekroczenia wspomnianej objętości artykułu, zalecamy wcześniejszy kontakt z redakcją.
• Praca musi zostać przesłana do redakcji w języku angielskim.
• Artykuł powinien zostać złożony do redakcji w formacie doc lub docx w formie trzech plików: – text.doc – plik zawierający całość tekstu, bez tytułu, słów kluczowych, nazwisk autorów i afiliacji, bez tabel oraz rysunków; – figures.doc – plik zawierający wszystkie rysunki wraz z podpisami; – tables.doc – plik zawierający wszystkie tabele wraz z podpisami;
• Teksty należy przygotować w formacie A4; marginesy: 2,5 cm; czcionka: Times New Roman 12 pkt.; interlinia: 1,5. Tekst powinien zostać podzielony logicznie na rozdziały i podrozdziały zgodnie z ogólnie przyjętymi zasadami redagowania artykułów naukowych. W tekście powinny zostać oznaczone miejsca, w których umieszczone mają zostać tabele i rysunki.
• Opisy rysunków powinny być zwięzłe i czytelne, wykonane pismem odpowiedniej wielkości tak, aby zachować ich czytelność po zmniejszeniu. Prosimy o unikanie umieszczania na rysunkach opisów słownych, które zaleca się podać w podpisie lub tekście artykułu. Wykresy należy zamieszczać bez ramki, ale domknięte również z prawej strony. Legenda do wykresu powinna znajdować się pod nim i być zamieszczona również bez ramki.
• Tabele zawsze powinny być podzielone na kolumny. W przypadku tabel zawierających dużo wyników, muszą być one również podzielone na wiersze aby zachować ich czytelność.
• Literatura w treści artykułu powinna być cytowana poprzez podanie w nawiasie nazwiska i roku publikowania pracy np. (Nowak 2019). W przypadku dwóch autorów cytowanej pracy należy podać obydwa nazwiska połączone „and” oraz rok publikacji np. (Nowak and Kowalski 2019). W przypadku wielu autorów cytowanej pracy należy podać nazwisko pierwszego autora, skrót „et al.” i rok publikowania pracy np. (Kowalski et al. 2019). Gdy w jednym miejscu autor odnosi się do kilku publikacji należy poszczególne cytowania oddzielić przecinkiem np. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Źródła internetowe powinny być cytowane podobnie jak inne teksty, tj. należy podawać autora i rok powstania danej publikacji.
• Zestawienie cytowanej literatury powinno być zamieszczone na końcu artykułu, uporządkowane alfabetycznie według nazwiska pierwszego z autorów. Wykaz literatury powinien zostać sporządzony według następujących zasad:
1. Czasopismo: Nazwiska i inicjały imion. (rok). Tytuł Artykułu, Nazwa Czasopisma, wolumin, numer, strony, DOI. Przykład: Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of article, Archives of Environmental Protection, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330.
2. Książka: Nazwiska i inicjały imion. (rok). Tytuł, Nazwa Wydawnictwa, miejsce i rok wydania. Przykład: Kraszewski, J. & Kinecki, K. (2019). Book Title, Prace i Studia, Zabrze 2019.
3. Praca zbiorowa pod redakcją: Nazwiska i inicjały imion autorów tekstu. (rok). Tytuł cytowanego rozdziału, in: Tytuł, nazwiska i inicjały imion redaktora/redaktorów. (Ed)/(Eds). Nazwa wydawnictwa, miejsce wydania, strony. Przykład: Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Prace i Studia, Zabrze, pp. 145–189.
4. Źródła internetowe: Nazwiska i inicjały imion lub nazwa instytucji publikującej dany tekst. (rok). Tytuł, (adres strony (czas dostępu)). Przykład: Kowalski, M. (2018). Title, ( (03.12.2018)).
5. Patenty: Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009. Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.
6. Materiały publikowane w języku innym niż angielski: Tytuły cytowanych materiałów powinny być przetłumaczone na język angielski. Na końcu przypisu, w nawiasie, powinna znaleźć się informacja na temat języka w jakim artykuł został opublikowany. Przykład:
Nowak, S.W. & Taylor, K.T. (2019). Title of article in English, Journal Name, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330. (in Polish)
Rozdział References powinien zawierać maksymalnie 30 pozycji w przypadku oryginalnych prac badawczych.
Przyjęcie artykułu do redakcji
Złożenie artykułu w redakcji jest równoznaczne z oświadczeniem Autora(ów), że praca nie była dotychczas publikowana i nie jest zgłoszona do publikacji w żadnym innym czasopiśmie. Autorzy przyjmują także odpowiedzialność za uzgodnienie wszystkich praw do jej zgłoszenia. Artykuły należy przesyłać drogą elektroniczną, poprzez Elektroniczny System Obsługi Redakcji, dostępny pod adresem internetowym: Prosimy o przesyłanie propozycji przynajmniej 4 potencjalnych recenzentów, w tym 2 z zagranicy, wraz z ich adresami e-mail.
Procedura recenzowania
Wszystkie nadesłane do redakcji artykuły oceniane są przez Kolegium Redakcyjne. Jeśli zostaną pozytywnie zaopiniowane przez co najmniej dwóch redaktorów, Redaktor Naczelna wraz z Redaktorami Działowymi dokonuje wyboru dwóch niezależnych recenzentów spośród autorytetów uznanych w danej dyscyplinie. Recenzenci zostają poproszeni o wykonanie recenzji, otrzymują tekst artykułu (bez danych personalnych autorów) oraz formularze recenzji obowiązujące w czasopiśmie, w uzasadnionych przypadkach poszerzone o dodatkowe pytania dotyczące artykułu. Czas oczekiwania na recenzje wynosi od 1 do 4 miesięcy.
Po zakończeniu procesu recenzowania Autorzy są informowani o jego wynikach oraz – jeżeli obie recenzje są pozytywne – proszeni o naniesienie sugerowanych poprawek. Następnie poprawiona praca jest weryfikowana przez redakcję pod kątem merytorycznym i edytorskim.
Akceptacja artykułu do druku
O przyjęciu pracy do druku decydują: opinie niezależnych recenzentów i akceptacja redakcji. Jeżeli w opinii recenzentów tekst wymaga dużych zmian, redakcja może zrezygnować z jego publikacji pomimo pozytywnych recenzji.
Po przyjęciu artykułu do druku Autorzy zostają o tym poinformowani, a także poproszeni o dokonanie opłaty za publikację oraz o przesłanie na adres redakcji wypełnionego oświadczenia o przekazaniu praw autorskich.
Weryfikacja językowa i korekta autorska
Wszystkie artykuły publikowane na łamach Archives of Environmental Protection przechodzą profesjonalną weryfikację językową. W przypadku bardzo wielu błędów językowych uniemożliwiających zrozumienie tekstu, artykuł zostaje odesłany do autorów z prośbą o ponowne przetłumaczenie wskazanych fragmentów lub – w skrajnych przypadkach – całości tekstu. Po weryfikacji językowej artykuł zostaje przygotowany do druku. Ostatnim etapem procesu publikacji jest korekta autorska. Autorzy otrzymują złożoną wersję artykułu z prośbą o naniesienie ostatnich poprawek.
Opłata za publikację
Redakcja czasopisma nie pobiera opłat za przyjęcie artykułu do procesu redakcyjnego. Koszt opublikowania artykułu w czasopiśmie wynosi:
• 20 EUR/80 zł za stronę czarno-białą lub w odcieniach szarości,
• 30 EUR/120 zł za stronę kolorową.
Wpłat w złotówkach należy dokonywać na nr konta:
Bank BGK.: 20 1130 1091 0003 9111 7820 0001
Wpłat w EUR należy dokonywać na nr konta:
Bank BGK.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
Prosimy o każdorazowe informowanie Redakcji o dokonaniu opłaty za publikację oraz o przesyłanie danych niezbędnych do wystawienia faktury.
Archives of Environmental Protection
Instytut Podstaw Inżynierii Środowiska PAN
ul. M. Skłodowskiej-Curie 34
41-819 Zabrze
Tel.: +48-32-271 64 81
Fax: +48-32-271 74 70

Additional info

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)



Baidu Scholar


CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)



DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

FSTA - Food Science & Technology Abstracts

Genamics JournalSeek



Google Scholar

Index Copernicus


Japan Science and Technology Agency (JST)


Journal Citation Reports/Science Edition


KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

Naviga (Softweco)

Primo Central (ExLibris)

ProQuest (relevant databases)






Summon (Serials Solutions/ProQuest)


TEMA Technik und Management

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

Web of Science - Biological Abstracts

Web of Science - BIOSIS Previews

Web of Science - Science Citation Index Expanded

WorldCat (OCLC)

This page uses 'cookies'. Learn more