Applied sciences

Archives of Mining Sciences

Content

Archives of Mining Sciences | 2021 | vol. 66 | No 1

Download PDF Download RIS Download Bibtex

Abstract

The authors of the paper describe the way in which the longitudinal working Gussmann was mined in level V and the longitudinal working Kosocice in level VI, which in both cases resulted in a water flux from behind the northern boundary of the salt deposit. Only after concrete dams were seated on both levels, the brine flux was stopped leaving a direct contact of the dams with the pressurized water around the mine. For the sake of controlling water beyond the dams, steel pipelines were conducted through both dams and equipped with gauges before the dams. Their use in a saline environment, the developing corrosion increased the possibility that the tightness of the pipelines would be damaged. For this reason a decision was made to protect the mine by making a tight reconstruction of the safety pillar in both levels along the longitudinal working for about 600 m from the dams eastwards. For this purpose the pipeline injection method was applied. As the volume of voids to be tightly filled equaled to about 3800 m3, the task had to be divided into stages. Because of considerable distances of the liquidated workings from the closest shaft, the sealing slurries were prepared in a special injection center on the surface from where they were transported to the destination with a pumping pipeline through the Kościuszko shaft. The most important aspect of liquidating the end parts of the longitudinal working was to properly select the sealing slurries in view of their best cooperation with the rock mass, and such parameters as tightness, durability and cost. At the end stage of works, both longitudinal workings were equipped with dams, which were sealed up with the hole injection method. The innovative technology was implemented in the Wieliczka Salt Mine to reconstruct the safety pillar in levels VI and V in the most westward workings, the mine was shortened by about 600 m, the length of the ventilation system was reduced, systematic observations and pressure read-outs in dams 3 and 4 were systematically eliminated in dams 3 and 4. In this way the costs were lowered and safety of the mine improved.
Go to article

Bibliography

1] M. Cała, A. Stopkowicz, M. Kowalski, M. Blajer, K. Cyran, K. d’Obyrn, Stability analysis of underground mining openings with complex geometry. Studia Geotechnica et Mechanica 38, 1, 25-32 (2016).
[2] K . d’Obyrn, K. Brudnik, Results of hydrogeological monitoring in ‘Wieliczka’ Salt Mine after closing water inflow in transverse working Mina, level IV (Wyniki monitoringu hydrogeologicznego w Kopalni Soli „Wieliczka” po zamknięciu dopływu wody w poprzeczni Mina na poz. IV). Mining Review (Przegląd Górniczy) 6, 90-96 (2011).
[3[ K . d’Obyrn, Possible way of protecting Jakubowice chambers in ‘Wieliczka’ Salt Mine (Możliwości zabezpieczenia komór Jakubowice w Kopalni Soli „Wieliczka”). Mining and Geoengineering (Górnictwo i Geoinżynieria), Yearly 35, 2, 171-182 (2011).
[4] D . Flisiak, K. Cyran, Geomechanical parameters of miocene rock salt (Właściwości geomechaniczne mioceńskich soli kamiennych). Geological Bulletin of the Polish Geological Institute (Biuletyn Państwowego Instytutu Geologicznego) 429, 43-49 (2008).
[5] A . Garlicki, A. Gonet, S. Stryczek, Reinforcement of saline rock mass on the example of the salt mine Wieliczka. Proc. of the 2001 ISRM Intern. Symposium Frontiers of Rock Mechanics and Sustainable Development in the 21st Centry Beijing, China., A.A. Balkema Publishers, 581-583 (2001).
[6] A . Garlicki, Z. Wilk, Geological and hydrogeological background of water breakdown at level IV in ‘Wieliczka’ Salt Mine (Geologiczne i hydrogeologiczne tło awarii wodnej na poziomie IV kopalni soli Wieliczka). Geological Review (Przegląd Geologiczny) 41, 3, 183-192 (1993).
[7] A . Gonet, S. Stryczek et al., Patent PL 170267 of 29.11.1996. Method of filling empty voids in the rock mass (Sposób wypełniania pustych przestrzeni górotworu).
[8] A . Gonet, S. Stryczek, A. Garlicki, W. Brylicki, Protection of Salt Mines against Water Inflow Threat on the Example of Wieliczka Salt Mine. 8th World Symposium Hague, Elsevier 1, 363-368 (2000).
[9] S. Stryczek et al., Patent PL 171213 of 28.03.1997. Mixture for filling and sealing empty spaces in the rock mass (Mieszanina do wypełniania i uszczelniania pustych przestrzeni górotworu).
[10] S. Stryczek, A. Gonet, Selection of slurries for reinforcing saline rock mass (Dobór zaczynów do wzmacniania górotworu solnego). Conference proceedings ‘Restoring usability value to mining areas. Old mines – new perspectives’ (Materiały konferencyjne pt. Przywracanie wartości użytkowych terenom górniczym. Stare kopalnie – nowe perspektywy), PAN -IGSMiE, Kraków, 327-335 (2001).
Go to article

Authors and Affiliations

Andrzej Gonet
1
ORCID: ORCID
Stanisław Antoni Stryczek
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper provides an analysis of the evacuation process in a road tunnel in the event of a fire, using the example of the tunnel under the Luboń Mały mountain currently being constructed on Expressway S7’s Lubień – Rabka-Zdrój section. As fires are the largest and most dangerous events occurring in road tunnels, it is important to predict the evacuation process as early as at the design stage. The study described here used numerical modelling to simulate evacuation, which made it possible to determine the required safe evacuation time of all tunnel users in a fire. On the basis of the parameters of the tunnel under Luboń Mały, numerical studies were performed for four different fire scenarios, three of which assumed various fire locations with the currently designed two traffic lanes. The fourth variant accounted for the planned extension of the roadway to include three traffic lanes. Eventually, four numerical models were developed involving various fire ignition locations and numbers of potential tunnel users. The values of initial-boundary conditions used in the simulation, such as movement speed during evacuation, shoulder breadth and pre-movement time, were specified on the basis of experimental data for an evacuation performed in smoke conditions in the Emilia tunnel in Laliki. The results lead to the conclusion that if the time of reaching critical conditions in the tunnel is not shorter than 5 minutes 40 seconds for the current design state and 5 minutes 47 seconds for three lanes, the distribution of evacuation exits in the tunnel under Luboń Mały will ensure safe evacuation.
Go to article

Bibliography

[1] C . Caliendo, M.L. De Guglielmo, Accident rates in road tunnel and social costs evaluation. SIIV – 5th International Congress – Sustainability of Road tunnels Infrastructures. In Procedia – Social and Behavioural Sciences 53, 166- 177 (2012).
[2] A . Voeltzel, A. Dix, A comparative analysis of the Mont Blanc, Tauern and Gotthard tunnel fires. World Road Association (PIARC ) 324, 18-34 (2004).
[3] I . Maevski, Design Fires in Road Tunnels, A synthesis of Highway Practice. New York: Transportation Research Board NCHR P National Cooperative Highway Research Program Synthesis 415. (2011).
[4] British Standard. The application of fire safety engineering principles to fire safety design of buildings. Human factors. Life safety strategies. Occupant evacuation, behaviour and condition, BSI. PD 7974-6:2004.
[5] E . Ronchi, P. Colonna, J. Capote, D. Alvear, N. Berloco, A. Cuesta, The evaluation of different evacuation models for assessing road tunnel safety analyses. Tunnelling and Underground Space Technology 30, 74-84 (2012). doi: 10.1016/j.tust.2012.02.008
[6] E . Ronchi, M. Kinsey, Evacuation models of the future: insights from an online survey of user’s experiences and needs. Advanced Research Workshop – Evacuation and Human Behaviour in Emergency Situations 145-155 (2011).
[7] N. Schmidt-Polończyk. Ocena możliwości stosowania wentylacji wzdłużnej w długich tunelach drogowych. Assessment of the possibility to apply longitudinal ventilation in long road tunnels. PhD thesis, AGH UST (2016).
[8] Road Tunnels: Operational Strategies for Emergency Ventilation. France: PIARC Committee on Road Tunnels (2011).
[9] M . Kinateder, P. Pauli, M. Müller, J. Krieger, F. Heimbecher, I. Rönnau, Human behaviour in severe tunnel accidents: Effects of information and behavioural training. Transportation Research Part F: Traffic Psychology and Behaviour 17, 20-32 (2013). doi: 10.1016/j.trf.2012.09.001
[10] E . Ronchi, K. Fridolf, H. Frantzich, D. Nilsson, A.L. Walter, H. Modig, A tunnel evacuation experiment on movement speed and exit choice in smoke. Fire Safety Journal 97, 126-136 (2018). doi: 10.1016/j.firesaf.2017.06.002
[11] M . Seike, N. Kawabata, M. Hasegawa, Evacuation speed in full-scale darkened tunnel filled with smoke. Fire Safety Journal 91, 901-907, (2017). doi: 10.1016/j.firesaf.2017.04.034
[12] C. Casse, S. Caroly, Analysis of critical incidents in tunnels to improve learning from experience. Safety Science 116, 222-230 (2019), DOI : 10.17632/scrdwnzc7t.1
[13] K . Fridolf, E. Ronchi, D. Nilsson, H. Frantzich, The representation of evacuation movement in smoke-filled underground transportation systems. Tunnelling and Underground Space Technology 90, 28-41 (2019), doi: 10.1016/j. tust.2019.04.016
[14] J. Porzycki, N. Schmidt-Polończyk, J. Wąs, Pedestrian behavior during evacuation from road tunnel in smoke condition – Empirical results. PLOS ONE 13 (8), e0201732 (2019). doi: 10.1371/journal.pone.0201732
[15] I. Donald, D. Canter, Intentionality and fatality during the King’s Cross underground fire. European Journal of Social Psychology 22 (3), 203-218 (1992).
[16] K . Fridolf, D. Nilsson, H. Frantzich, Fire Evacuation in Underground Transportation Systems: A Review of Accidents and Empirical Research. Fire Technology 49 (2), 451-475 (2013). doi: 10.1007/s10694-011-0217-x
[17] Thunderhead Engineering. Pathfinder 2014.2 Verification and Validation (2014).
[18] Thunderhead Engineering. Pathfinder 2016. User Manual (2016).
[19] P. Liszka, Ocena bezpieczeństwa ewakuacji w tunelu pod Luboniem Małym. Master’s Thesis, AGH University of Science and Technology (2018).
[20] P.G. Gipps, B. Marksjo, A microsimulation model for pedestrian flows. Mathematics and Computers in Simulation 27, 95-105 (1985).
[21] M . Moussaïd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz, The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLOS ONE. 5 (4), 1-7 (2010). doi: 10.1371/journal.pone.0010047
[22] RABT : Forschungsgesellschaft fur Strassen-and Verkehrswesen, Richtlinien fuer Ausstattung und Betrieb von Strassentunneln (2006).

Go to article

Authors and Affiliations

Natalia Schmidt-Polończyk
1
ORCID: ORCID
Zbigniew Burtan
1
ORCID: ORCID
Piotr Liszka
1

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mutual influence of fatigue processes, abrasive wear and corrosion of chain links on the functional properties of mining round link chains has been presented in this paper. Selected results of experimental investigations in the field of synergic impact of these destructive processes on the operational durability of mining chains have also been presented. The emphasis was given to the necessity of a comprehensive consideration of destructive processes that occur in various conditions of use of round link chains applied in mining machines.
Go to article

Bibliography

[1] www.fasing.pl, accessed: 14.06.2018
[2] E . Remiorz, S. Mikuła, Podstawowe formy degradacji własności użytkowych łańcuchów ogniwowych górniczych stosowanych w maszynach ścianowych. Maszyny Górnicze 35 (3), (2017).
[3] S. Mikuła, Trwałość zmęczeniowa cięgien łańcuchowych górniczych maszyn urabiających i transportowych. Prace Badawcze CMG Komag, Gliwice (1978).
[4] S. Kocańda, Zmęczeniowe niszczenie metali. WNT , Warszawa (1972).
[5] P .M. Wnuk, Pojęcia i zależności w liniowej i nieliniowej mechanice pękania. Eksploatacja i Niezawodność – Maintenance and Reliability 6 (1) (2004).
[6] J. Gubała, E. Zięba, Wykorzystanie mechaniki pękania do określenia wytrzymałości konstrukcji w warunkach oddziaływania korozyjnego. Przegląd Mechaniczny 35 (1) (1976).
[7] K . Kotwica, K. Furmanik, B. Scherf, Wpływ warunków pracy na zużycie i trwałość cięgien łańcuchowych zgrzebłowych przenośników ścianowych w wybranych kopalniach węgla kamiennego. Przegląd Górniczy 67 (11), (2011).
[8] J. Hankus, M. Szot, A. Pytlik, K. Paradowski, Badania łańcuchów ogniwowych górniczych. Materiały Sympozjum Szkoleniowego Europejskiego Studium Menedżerskiego, Jastrzębie Zdrój (2006).
[9] H . Kania, Kształtowanie struktury oraz odporność korozyjna powłoki Zn-Al otrzymanych metodą metalizacji zanurzeniowej. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[10] M. Dolipski , E. Remiorz, P. Sobota, J. Osadnik, Komputerowe badania wpływu zużycia den gniazd i flanki zębów bębna na położenie ogniw w gniazdach bębna łańcuchowego. Mechanizacja i Automatyzacja Górnictwa 49 (4), (2011).
[11] M. Dolipski, E. Remiorz, P. Sobota, Determination of dynamic loads of sprocket drum teeth and seats using mathematical model of a scraper conveyor. Arch. Min. Sci. 57 (4), (2012).
[12] M. Dolipski, P. Cheluszka, E. Remiorz, P. Sobota, Innowacyjne górnicze przenośniki zgrzebłowe. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[13] A .N. Wieczorek, Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron. Arch Metall. Mater. 61 (4), (2016).
[14] A .N. Wieczorek, Comparative studies on the wear of ADI alloy cast irons as well as selected steels and surfacehardened alloy cast steels in the presence of abrasive. Arch. Metall. Mater. 62 (1), (2017).
[15] S. Mikuła, Ł. Gajda, Metody badań zużycia ściernego łańcuchów górniczych. Zeszyty Naukowe Politechniki Śląskiej, s. Górnictwo 93 (1978).
[16] E . Remiorz, S. Mikuła, Diagnosis of round link chains resistance to abrasive wear. Technicka Diagnostika 27 (1), (2018).
[17] B . Pawlukiewicz, J. Wiederman, Mechanizm niszczenia ogniw łańcuchów górniczych podczas eksploatacji. Inżynieria Materiałowa 19 (5), (1998).
[18] E . Remiorz, S. Mikuła, Eksploatacyjna diagnostyka ogniwowych łańcuchów górniczych stosowanych w pociągowych układach łańcuchowych maszyn ścianowych. Maszyny Górnicze 36 (1), (2018).
Go to article

Authors and Affiliations

Eryk Remiorz
1
ORCID: ORCID
Stanisław Mikuła
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Department of Mining Mechanization and Robotisation, 2 Akademicka Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As the duration of a rock burst is very short and the roadway is seriously damaged after the disaster, it is difficult to observe its characteristics. In order to obtain the dynamic characteristics of a rock burst, a modified uniaxial compression experiment, combined with a high-speed camera system is carried out and the process of a rock burst caused by a static load is simulated. Some significant results are obtained: 1) The velocity of ejected particles is between 2 m/s and 4 m/s. 2) The ratio of elastic energy to plastic energy is about five. 3) The duration from integrity to failure is between 20 ms and 40 ms. Furthermore, by analyzing the stress field in the sample with a numerical method and crack propagation model, the following conclusions can be made: 1) The kinetic energy of the ejected particles comes from the elastic energy released by itself. 2) The ratio of kinetic energy to elastic energy is between 6% and 15%. This can help understand the source and transfer of energy in a rock burst quantitatively.
Go to article

Bibliography

[1] F. Ren, C. Zhu, M. He, Moment Tensor Analysis of Acoustic Emissions for Cracking Mechanisms During Schist Strain Burst. Rock Mech. Rock Eng. 53, 1-2(2019). DOI: 10.1007/s00603-019-01897-3
[2] G . Su Y. Shi, X. Feng, J. Jiang, J. Zhang, Q. Jiang, True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes. Rock Mech. Rock Eng. 51, 375-389 (2018). DOI: 10.1007/ s00603-017-1344-6
[3] F. Gong, Y. Luo, X. Li, X. Si, M. Tao, Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn. Undergr. Sp. Tech. 81, 413-427(2018). DOI: 10.1016/j.tust.2018.07.035
[4] S.H. Cho, Y. Ogata, K. Kaneko, A method for estimating the strength properties of a granitic rock subjected to dynamic loading. Int. J. Rock Mech. Min. 42 (4), 561-568(2005). DOI: 10.1016/j.ijrmms.2005.01.004
[5] J. Wang, H.D. Park, Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Sp. Tech. 16 (1), 49-57(2001). DOI: 10.1016/S0886-7798(01)00030-X
[6] M.N. Bagde, V. Petorš, Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int. J. Rock Mech. Min. Sci. 42 (2), 237-250(2005). DOI: 10.1016/j.ijrmms.2004.08.008
[7] M. Cai, H. Morioka, P.K. Kaiser, Y. Tasaka, H. Kurose, M. Minami, T. Maejima, Back-analysis of rock mass strength parameters using AE monitoring data. Int. J. Rock Mech. Min. 44 (4), 538-549(2007). DOI: 10.1016/j.ijrmms.2006.09.012
[8] K. Du, M. Tao, X. Li, J. Zhou, Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance. Rock Mech. Rock Eng. 49 (9), 3437-3453(2016). DOI: 10.1007/s00603-016-0990-4
[9] R . Simon, PhD thesis, Analysis of fault-slip mechanisms in hard rock mining, McGill University, Quebec/Montreal, Canada (1999).
[10] N .G. Cook, The failure of rock. Int. J. Rock Mech. Min. 2 (4), 389-403(1965). DOI: 10.1016/0148-9062(65)90004-5
[11] P.N. Calder, D. Madsen, High frequency precursor analysis prior to a rockburst. Int. J. Rock Mech. Min. Geomech. Abstr.26, 3-4 (1989). DOI: 10.1016/0148-9062(89)92469-8
[12] Z.T. Bieniawski, Mechanism of brittle fracture of rock: Part II—experimental studies. Int. J. Rock Mech. Min. 4 (4), 407-423 (1967). DOI: 10.1016/0148-9062(67)90031-9
[13] S.P. Singh, Burst energy release index. Rock Mech. Rock Eng. 21 (2), 149-155 (1988). DOI: 10.1007/BF01043119
[14] A. Kidybiński, Bursting liability indices of coal. Int. J. Rock Mech. Min. Sci. 18 (4), 295-304 (1981). DOI: 10.1016/0148-9062(81)91194-3
[15] A. Tajduś, M. Cala, K. Tajduś, Seismicity and Rock Burst Hazard Assessment in Fault Zones: a Case Study. Arch. Min. Sci. 63 (3), 747-765 (2018). DOI: 10.24425/123695
[16] W.D. Ortlepp, T.R. Stacey, Rockburst mechanisms in tunnels and shafts. Tunn. Undergr. Sp. Tech. 9 (1), 59-65 (1994). DOI: 10.1016/0886-7798(94)90010-8
[17] H . Marcak, Seismicity in mines due to roof layer bending. Arch. Min. Sci. 57 (1), 229-250 (2012). DOI: 10.2478/v10267-012-0016-3
[18] T.J. Williams, C.J. Wideman, D.F. Scott, Case history of a slip-type rockburst. Pure Appl. Geophys. 139, 627-637 (1992). DOI: 10.1007/BF00879955
[19] A.A. Griffith, VI. The phenomena of rupture and flow in solids. Phil. Trans. Math. Phys. Eng. Sci. 221 (582-593), 163-198 (1921). DOI: 10.1098/rsta.1921.0006
Go to article

Authors and Affiliations

Weiyu Zheng
1 2

  1. China University of Mining & Technology (Beijing), School of Energy and Mining Engineering, China
  2. State Key Laboratory of Coal Mining and Clean Utilization, China
Download PDF Download RIS Download Bibtex

Abstract

In order for the ultimate state methods to be applied in dimensioning of the load-bearing elements in a conveyance, it is required that their design loads during their normal duty cycle and under the emergency braking conditions should be first established. Recently, efforts have been made to determine the interaction forces between the shaft steelwork and the conveyance under the normal operating condition [1,2]. Thus far, this aspect has been mostly neglected in design engineering. Measurement results summarised in this paper and confronted with the theoretical data [3] indicate that the major determinant of fatigue endurance of conveyances is the force acting horizontally and associated with the conveyance being hoisted in relation to the vertical force due to the weight of the conveyance and payload.
Go to article

Bibliography

[1] F . Matachowski, PhD thesis, Opracowanie kryteriów projektowania wybranych elementów nośnych naczynia wydobywczego. AGH University of Science and Technology, Kraków, Poland (2011).
[2] S. Wolny, F. Matachowski, Operating Loads of the Shaft Steelwork – Conveyance System dne to Ranchon Irregularities of the Guiding Strings. Arch. Min. Sci. 55 (3), 589-603 (2010).
[3] S. Wolny, Wybrane problemy wytrzymałościowe w eksploatacji górniczych urządzeń wyciągowych. Monografia. Problemy Inżynierii Mechanicznej i Robotyki, AGH, Nr 20, Kraków (2003).
[4] M. Płachno, Metoda dynamiczna badań stanu zmienności naprężeń w cięgnach naczyń wyciągowych powodowanego nierównościami torów prowadzenia. In monograph: Transport szybowy 2007, Wydawnictwo KO MAG, Gliwice, II , 51-60 (2007).
[5] M. Płachno, Mathematical model of transverse vibrations of a high-capacity mining skip due misalignment of the guiding tracks in the hoisting shaft. Arch. Min. Sci. 63 (1), 3-26 (2018).
[6] D . Fuchs, H. Noeller, Untersuchungen an Haupttraggliedern hochbeanspruchter Fördermittel. Sonderabdruck aus Glückauf 124 (9), 512-514 (1998).
[7] M. Płachno, Z. Rosner, Możliwości wczesnego wykrywania procesów zmęczeniowych w cięgnach naczyń wyciągów górniczych. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie, Wydanie Specjalne, 241-246 (1997).
[8] S. Wolny, Interactions in mechanical systems due to random inputs on the example of a mine hoist. International Education & Research Journal, Engineering 1 (5), 70-74 (2015).
[9] S. Wolny, Displacements in mechanical systems due to random inputs in a mine hoist installation. Engineering Transactions 65 (3), 513-522 (2017).
[10] S. Wolny et al., Research work, Opracowanie kryteriów oceny konstrukcji nośnej naczyń górniczych wyciągów szybowych w aspekcie przedłużenia okresu bezpiecznej eksploatacji. Katedra Wytrzymałości Materiałów i Konstrukcji, AGH University of Science and Technology, Kraków (2003) (unpublished).
[11] A . Pieniążek, J. Weiss, A. Winiarz, Procesy stochastyczne w problemach i zadaniach. Wydawnictwo Politechniki Krakowskiej, Kraków (1999).
[12] V.A. Sretlickij, Slucajnye kolebanija mechaniceskich system. Moskva: Masinostroenie (1976).
[13] S. Wolny, Loads experienced by load-bearing components of mine hoist installations due to random irregularities and misalignments of the guide strings. Journal of Machine Construction and Maintenance 3 (110), 79-86 (2018).
[14] S. Wolny, S. Badura, Wytrzymałość cięgien nośnych górniczego naczynia wydobywczego. Journal of Civil Engineering, Environment and Architecture 34 (64), 149-158 (2017).
[15] S. Kawulok, Oddziaływanie zbrojenia szybu na mechanikę prowadzenia naczynia wyciągowego. Prace GIG, Katowice (1989).
[16] Przepisy górnicze „Rozporządzenie Rady Ministrów z dnia 30 kwietnia 2004 r. w sprawie dopuszczenia do stosowania w zakładach górniczych (Dz.U. Nr 99, poz. 1003 z 2005 r. Nr 80, poz. 695 oraz z 2007 r. Nr 249, poz. 1853, pkt 1.2 Naczynia wyciągowe” (2004).
Go to article

Authors and Affiliations

Stanisław Wolny
1
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is commonly known that the cause of serious accidents in underground coal mining is methane. Thus, computational fluid dynamics (CFD) becomes a useful tool to simulate methane dispersion and to evaluate the performance of the ventilation system in order to prevent mine accidents related to methane. In this study, numerical and experimental studies of the methane concentration and air velocity behaviour were carried out. The experiment was conducted in an auxiliary ventilated coal heading in Turkish Hard Coal Enterprises (TTK), which is the most predominant coal producer in Turkey. The simulations were modeled using Fluent-Ansys v.12. Significant correlations were found when experimental values and modeling results were compared with statistical analysis. The CFD modeling of the methane and air velocity in the headings especially uses in auxiliary ventilation systems of places where it is hard to measure or when the measurements made are inadequate.
Go to article

Bibliography

[1] J. Toraño, S.Torno, M. Menendez, M. Gent, J. Velasco, Models of methane behaviour in auxiliary ventilation of underground coal mining. Int. J. of Coal Geology 80 (1), 35-43 (2009).
[2] J.K. Richmond, G.C. Price, M.J. Sapko, E.M. Kawenski, Historical summary of coal mine explosions in the United States 1959-1981. In: Bureau of Mines Information Circular (IC-8909), (1983).
[3] The Chamber of Mining Engineers of Turkey (TMMOB), The Occupational Accidents Report in Mining, Turkey (2010).
[4] A .M. Wala, B.J. Kim, Simulation of unsteady-state of airflow and methane concentration processes in mine ventilation systems caused by disturbances in main fan operation. In: Mopusset-Jones (Eds.), the Second US Mine Ventilation Symposium, (1985).
[5] J.S. Edwards, T.X. Ren, R. Jozefowicz, Using CFD to solve mine safety and health problems. In: APCOM XXV Conference, Brisbane, (1995).
[6] M.T. Parra, J.M. Villafruela, F. Castro, C. Méndez, Numerical and experimental analysis of different ventilation systems in deep mines. Building and Env. 41 (2), 87-93 (2006).
[7] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of Methane Dispersion and Innovative Methane Management in Underground Mining Faces. Appl. Mathematical Modelling 38, 3467-3484 (2014).
[8] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of A Novel Intermittent Ventilation System for Underground Mines. Tunnelling and Underground Space Technology 42, 206-215 (2014).
[9] X. Wang, X. Liu, Y. Sun, J. An, J. Zhang, H. Chen, Construction schedule simulation of a diversion tunnel based on the optimized ventilation time. J. of Hazard Materials 165, 933-943 (2009).
[10] D. Xie, H. Wang, K.J. Kearfott, Z. Liu, S. Mo, Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability. J. of Env. Radioactivity 129, 57-62 (2014).
[11] J. Toraño, S. Torno, M. Menendez, M. Gent, Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunnelling Underground Space Technology 26, 201-210 (2011) .
[12] A .M. Wala, J.C. Yingling, J. Zhang, Evaluation of the face ventilation systems for extended cuts with remotely operated mining machines using three-dimensional numerical simulations. In: Metall. and Exploration Annual Meeting Society for Mining, (1998).
[13] S .M. Aminossadati, K. Hooman, Numerical simulation of ventilation air flow in underground mine workings. In: 12th U.S./North American Mine Ventilation Symposium, 253-259 (2008).
[14] M. Branny, Computer simulation of flow of air and methane mixture in the longwall-return crossing zone. Petroleum Journals Online, 1-10 (2007).
[15] N .I. Vlasin, C. Lupu, M. Şuvar, V.M. Pasculescu, S. Arad, Computerised modelling of methane releases exhaust from a retreating logwall face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 274-277 (2013).
[16] Z .H. Zhang, E.K. Hov, N.D. Deng, J.H. Guo, Study on 3D mine tunnel modelling. In: the International Conference on Environment, Ecosystem and Development (EE D’07), 35-40 (2007).
[17] S .M. Radui, G. Dolea, R. Cretan, Modeling and simulation of coal winning process on the mechanized face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 30-35 (2013).

[18] J. Cheng, S. Li, F. Zhang, C. Zhao, S. Yang, A. Ghosh, J. of Loss Prevention in the Process Industries 40, 285-297 (2016).
[19] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part II: Parametric studies. J. of Naturel Gas Science and Engineering 43, 254-267 (2017b).
[20] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results. J. of Naturel Gas Science and Engineering 43, 242-253 (2017a).
[21] Y . Lu, S. Akhtar, A.P. Sasmito, J.C. Kurnia, Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. Int. J. of Mining Science and Technology 27, 657-662 (2017).
[22] Q. Zhang, G. Zhou, X. Qian, M. Yuan, Y. Sun, D. Wang, Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation. J. of Cleaner Production 184, 239-250 (2018).
[23] J. Wachowicz, J.M. Laczny, S. Iwaszenko, T. Janoszek, M. Cempa-Balewicz, Modelling of underground coal gasification process using CFD methods. Arch. Min. Sci. 60, 663-676 (2015).
[24] T . Skjold, D. Castellanos, K.L. Olsen, R.K. Eckhoff, Experimental and numerical investigations of constant volume dust and gas explosions in a 3.6-m flame acceleration tube. J. of Loss Prevention in the Process Industries 30, 164-176 (2014).
[25] C.A. Palmer, E. Tuncalı, K.O. Dennen, T.C. Coburn, R.B. Finkelman, Characterization of Turkish coals: a nationwide perspective. Int. J. Coal Geology 60, 85-115 (2004).
[26] S . Toprak, Petrographic properties of major coal seams in Turkey and their formation. Int. J. of Coal Geology 78, 263-275 (2009).
[27] A .E. Karkınlı, T. Kurban, A. Kesikoglu, E. Beşdok, CFD based risk simulations and management on CBS. In: Congress of Geographic Information Systems, Antalya, Turkey (2011). [28] http://www.theatc.org/events/cleanenergy/pdf/TuesdayMorningBallroom2&3/Bicer, accessed: 09.05.2012.
[29] Turkish Hard Coal Enterprises (TT K), Turkish Hard Coal Enterprise general management activities between 2003 and 2009, (2009).
[30] I. Diego, S. Torno, J. Torano, M. Menendez, M. Gant, A practical use of CFD for ventilation of underground works. Tunnelling Underground Space Technology 26, 189-200 (2011).
[31] S . Torno, J. Torano, M. Ulecia, C. Allende, Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunnelling Underground Space Technology 34, 73-81 (2013).
[32] Z . Altaç, Modeling Samples with Gambit and Fluent. Depart. of the Mech. Eng. of Eskisehir Osmangazi Univ., Turkey (2005).
[33] A . Konuk, S. Önder, Statistics for Mining Engineers. Depart. of the Mining Eng. of Eskisehir Osmangazi Univ., Turkey (1999).
Go to article

Authors and Affiliations

Gülnaz Daloğlu
1
Mustafa Önder
1
Teresa Parra
2

  1. Eskişehir Osmangazi Üniversitesi Müh. Mim. Fak. Maden Mühendi sliği Bölümü, 26480 Eskişehir, Turkey
  2. University of Valladolid, Department of Energy and Fluid Mechanics, Valladolid, Spain
Download PDF Download RIS Download Bibtex

Abstract

The impact of caulking of goafs after mining exploitation of a hard coal seam with caving is expressed as the change in value of a a exploitation coefficient which, as defined, is the quotient of the maximum reduction in the surface height of a complete or incomplete trough to the thickness of the exploited seam. The basis for determining the value of the exploitation coefficient was geological and mining data combined with the results of the measurement of subsidence on the surface – measuring line 1222-1301 – of the Ruda mine. There, mining was carried out between 2005 and 2019, with a transverse longwall system and the caulking of goafs. The research team used two methods to determine the impact of the caulking applied in the goafs on the value of the exploitation coefficient. In the first method the goafs are filled evenly along the whole longwall, and in the second method unevenly and on a quarterly basis. The determination of the values of the exploitation coefficients for selected measuring points was preceded by the determination of the parameters of the Knothe-Budryk theory, which was further developed by J. Białek. The obtained dependencies are linear and the values of the correlation coefficients fall between –0.684 and –0.702, which should be considered satisfactory in terms of experimental data. It is possible to reduce the value of the exploitation coefficient by caulking the goafs by about 18%, when filling the goafs to 0.26% of the height of the active longwall.
Go to article

Bibliography

[1] J. Białek, Opis nieustalonej fazy obniżeń terenu górniczego z uwzględnieniem asymetrii wpływów końcowych. Zeszyty Naukowe Politechniki Śląskiej (1), 1991.
[2] J. Białek, Algorytmy i programy komputerowe do prognozowania deformacji terenu górniczego. Wydawnictwo Politechniki Śląskiej 2003.
[3] Y. Jiang, R. Misa, K. Tajduś, A. Sroka, A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Archives of Mining Sciences 65 (1), 147-158 (2020), doi: 10.24425/132712
[4] S. Knothe, Prognozowanie wpływów eksploatacji górniczej. 1984 Wydawnictwo Śląsk, Katowice.
[5] A. Kowalski, Deformacje powierzchni terenu górniczego kopalń węgla kamiennego. 2020 Wydawnictwo Głównego Instytutu Górnictwa, Katowice.
[6] H . Kratzsch Bergschadenkunde, 2008 Deutscher Markscheider-Verein e.v., Bochum.
[7] M. Mazurkiewicz, Z. Piotrowski, Grawitacyjne podsadzanie płytkich zrobów zawiesiną popiołów lotnych w wodzie. Ochrona Terenów Górniczych 66, 6-8 (1984).
[8] M. Mazurkiewicz, Technologiczne i środowiskowe aspekty stosowania stałych odpadów przemysłowych do wypełniania pustek w kopalniach podziemnych. Zeszyty Naukowe AGH, Górnictwo nr 152, (1990).
[9] T. Niemiec, Porowatość zrobów a współczynnik eksploatacyjny. Sbornik referatu XVIII, Konference SDMG, 161- 167 (2011).
[10] W . Piecha, S. Szewczyk, T. Rutkowski, Ochrona powierzchni dzielnicy Wirek w świetle dokonanej i prowadzonej podziemnej eksploatacji górniczej. Przegląd Górniczy (2) 55-66, (2019).
[11] Z . Piotrowski, M. Mazurkiewicz, Chłonność doszczelnianych zrobów zawałowych. Górnictwo i Geoinżynieria 30 (3), 37-45 (2006).
[12] F. Plewa, Z. Mysłek., G. Strozik, Zastosowanie odpadów energetycznych do zestalania rumowiska skalnego. Polityka Energetyczna XI (1), 351-360 (2008).
[13] P. Polanin, A. Kowalski, A. Walentek, Numerical simulation of subsidence caused by roadway system. Archives of Mining Sciences 64 (2), 385-397 (2019), doi: 10.24425/1286090
[14] E . Popiołek, Z. Niedojadło, P. Sopata, T. Stoch, Możliwości wykorzystania pogórniczych niecek obniżeniowych do oszacowania objętości pustek w zrobach poeksploatacyjnych. (2014).
[15] T. Rutkowski, Ocena wpływu podsadzania zrobów zawałowych na obniżenia powierzchni terenu w warunkach górnośląskiego zagłębia węglowego. Główny Instytut Górnictwa, praca doktorska, Katowice, 2019.
[16] R. Ślaski, Warunki zatapiania kopalni „Morcinek”. Materiały konferencyjne SITG Oddział Rybnik. Ochrona środowiska na terenach górniczych podziemnych i odkrywkowych zlikwidowanych zakładów górniczych w subregionie zachodnim województwa śląskiego, (2010).
[17] Subsidence Engineers’ Hand book, National Coal Board Mining Department, 1975.
[18] A. Stanisz, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny (1). Statystyki podstawowe, StatSoft Polska, 2006, Kraków.
[19] P. Strzałkowski, Doszczelnianie zrobów zawałowych a deformacje powierzchni terenu. Materiały Konferencyjne Szkoły Eksploatacji Podziemnej. Centrum Podstawowych Problemów Gospodarki Surowcami Mineralnymi i Energią PAN , 27-40 (1995).
[20] D .N. Whittaker, D.J Reddish, Subsidence. Occurrence, Prediction and Control, 1989 Elsevier, Amsterdam, Oxford, New York, Tokyo.
[21] J . Zhang, Q. Sun, N. Zhou, J. Haiqiang, D. Germain., S. Abro, Research and application of roadway backfill coal mining technology in western coal mining area. Arab J. Geosci. (9:558), 1-10 (2016).
[22] H . Zhu, F. He, S. Zhang, Z. Yang, An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of southwestern China a typical case study. Gospodarka Surowcami Mineralnymi- Mineral Resources Management (34), 119-138 (2018), doi: 10.24425/118641
[23] J. Zych, R. Żyliński, P. Strzałkowski, Wpływ doszczelniania zrobów zawałowych na wielkość deformacji powierzchni. Materiały Konferencji naukowo-technicznej II Dni Miernictwa Górniczego i Ochrony Terenów Górniczych, 307-311 (1993).
Go to article

Authors and Affiliations

Andrzej Kowalski
1
ORCID: ORCID
Jan Białek
2
ORCID: ORCID
Tadeusz Rutkowski
3
ORCID: ORCID

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. PGG S.A. KWK Ruda, Ruda Śląska, Poland
Download PDF Download RIS Download Bibtex

Abstract

Stability control of the roof is the key to safe and efficient mining of the longwall working face for a steeply dipping coal seam. In this study, a comprehensive analysis was performed on the roof destruction, migration, and filling characteristics of a steeply dipping longwall working face in an actual coalmine. Elastic foundation theory was used to construct a roof mechanics model; the effect of the coal seam inclination angle on the asymmetric deformation and failure of the roof under the constraint of an unbalanced gangue filling was considered. According to the model, increasing the coal seam angle, thickness of the immediate roof, and length of the working face as well as decreasing the thickness of the coal seam can increase the length of the contact area formed by the caving gangue in the lower area of the slope. Changes to the length of the contact area affect the forces and boundary conditions of the main roof. Increasing the coal seam angle reduces the deformation of the main roof, and the position of peak deflection migrates from the middle of the working face to the upper middle. Meanwhile, the position of the peak rotation angle migrates from the lower area of the working face to the upper area. The peak bending moment decreases continuously, and its position migrates from the headgate T-junction to the tailgate T-junction and then the middle of the working face. Field test results verified the rationality of the mechanics model. These findings reveal the effect of the inclination coal seam angle on roof deformation and failure and provide theoretical guidance for engineering practice.
Go to article

Bibliography

[1] Y.P. Wu, D.F Yun, P.S. Xie et al., Progress, practice and scientific issues in steeply dipping coal seams fullymechanized mining. J. China Coal Soc. 45 (01):24-34 (2020) (in Chinese).
[2]. Y.P. Wu, B.S. Hu, D Lang et al., Risk assessment approach for rockfall hazards in steeply dipping coal seams. Int. J. Rock Mech. Min. Sci. 138, 104626 (2021). doi: 10.1016/j.ijrmms.2021.104626
[3] D .Y. Zhu, W.L. Gong, Y. Su et al., Application of High-Strength Lightweight Concrete in Gob-Side Entry Retaining in Inclined Coal Seam. Advances in Materials Science and Engineering (2020). doi: 10.1155/2020/8167038
[4] H .W. Wang, Y.P. Wu, J.Q. Jiao et al., Stability Mechanism and Control Technology for Fully Mechanized Caving Mining of Steeply Inclined Extra-Thick Seams with Variable Angles. Mining, Metall. Explor. (2020). doi: 10.1007/ s42461-020-00360-0
[5] R .A. Frumkin, Predicting rock behaviour in steep seam faces (in Russian). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20 (1), A12-A13 (1983). doi: 10.1016/0148-9062(83)91717-5
[6] A. Ladenko, Improvements in working steep seams. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 11 (12), 247. (1974). doi: 10.1016/0148-9062(74)92108-1
[7] Z. Rak, J. Stasica, Z. Burtan et al., Technical aspects of mining rate improvement in steeply inclined coal seams: A case study. Resources 9 (12), 1-16 (2020). doi: 10.3390/resources9120138
[8] H .S. Tu, S.H. Tu, C. Zhang et al., Characteristics of the Roof Behaviours and mine pressure manifestations during the mining of steep coal seam. Arch. Min. Sci. 62 (4), 871-890 (2020).
[9] P .S. Xie, Y.P. Wu, Deformation and failure mechanisms and support structure technologies for goaf-side entries in steep multiple seam mining disturbances. Arch. Min. Sci. 64 (3), 561-574 (2019). doi: 10.24425/ams.2019.129369
[10] Z.Y.Wang, L.M. Dou, J. He et al., Experimental investigation for dynamic instability of coal-rock masses in horizontal section mining of steeply inclined coal seams. Arabian Journal of Geosciences 13, 15 (2020). doi: 10.1007/ s12517-020-05753-5
[11] P .S. Xie, Y. Luo, Y.P. Wu et al., Roof Deformation Associated with Mining of Two Panels in Steeply Dipping Coal Seam Using Subsurface Subsidence Prediction Model and Physical Simulation Experiment. Mining, Metall. Explor. 37 (2), 581-591 (2020). doi: 10.1007/s42461-019-00156-x
[12] X.P. Lai, H. Sun, P.F. Shan et al., Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams. Int. J. Miner. Metall. Mater. 22 (12), 1233-1244 (2015). doi: 10.1007/s12613-015-1190-z
[13] Y.P. Wu, B.S. Hu, P.S. Xie, A New Experimental System for Quantifying the Multidimensional Loads on an on-Site Hydraulic Support in Steeply Dipping Seam Mining. Exp. Tech. 43 (5), 571-585 (2019). doi: 10.1007/s40799-019- 00304-4
[14] Y.D. Zhang, J.Y. Cheng, X.X. Wang et al., Thin plate model analysis on roof break of up-dip or down-dip mining stope. J. Min. Saf. Eng. 27 (4), 487 (2010) (in Chinese).
[15] J.R. Cao, L.M. Dou, G.A. Zhu et al., Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies 13 (22), 6043 (2020). doi: 10.3390/en13226043
[16] H .W. Wang, Y.P. Wu, M. Liu et al., Roof-breaking mechanism and stress-evolution characteristics in partial backfill mining of steeply inclined seams. Geomatics, Natural Hazards and Risk 11 (1), 2006-2035 (2020). doi: 10.1080/1 9475705.2020.1823491
[17] S.R. Islavath, D. Deb, H. Kumar, Numerical analysis of a longwall mining cycle and development of a composite longwall index. Int. J. Rock Mech. Min. Sci. 89, 43-54 (2016).
[18] H . Basarir, O.I. Ferid, O. Aydin, Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis. Int. J. Rock Mech. Min. Sci. 76, 88-97 (2015). doi: 10.1016/j.ijrmms.2015.03.001
[19] J.A. Wang, J.L. Jiao, Criteria of support stability in mining of steeply inclined thick coal seam. Int. J. Rock Mech. Min. Sci. 82, 22-35 (2016). doi: 10.1016/j.ijrmms.2015.11.008
[20] W.Y. Lv, Y.P. Wu, M. Liu et al., Migration law of the roof of a composited backfilling longwall face in a steeply dipping coal seam. Minerals 9 (3) (2019). doi: 10.3390/min9030188
[21] C.F. Huang, Q. Li, S.G.Tian, Research on prediction of residual deformation in goaf of steeply inclined extra- thick coal seam. PLoS ONE 15, 1-14 (2020). doi: 10.1371/journal.pone.0240428
[22] Y.C. Yin, J.C. Zou, Y.B. Zhang et al., Experimental study of the movement of backfilling gangues for goaf in steeply inclined coal seams. Arabian Journal of Geosciences 11 (12) (2018). doi: 10.1007/s12517-018-3686-0
[23] G .S.P Singh, U.K. Singh, Prediction of caving behavior of strata and optimum rating of hydraulic powered support for longwall workings. Int. J. Rock Mech. Min. Sci. 47, 1-16 (2010).
[24] P .S. Xie, Y.Y. Zhang, S.H. Luo et al., Instability Mechanism of a Multi-Layer Gangue Roof and Determination of Support Resistance Under Inclination and Gravity. Mining, Metall. Explor. 37 (5), 1487-1498 (2020). doi: 10.1007/ s42461-020-00252-3
[25] G .J. Wu, W.D. Chen, S.P. Jia et al., Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 130, 104324 (2020). doi: 10.1016/j.ijrmms.2020.104324
[26] Y.Q. Long, Numerical computation of beam on elastic foundation. People’s Education Press, Beijing (1981).

Go to article

Authors and Affiliations

Shenghu Luo
1
ORCID: ORCID
Tong Wang
2
ORCID: ORCID
Yongping Wu
2
ORCID: ORCID
Jingyu Huangfu
2
ORCID: ORCID
Huatao Zhao
3
ORCID: ORCID

  1. Xi’an University of Science and Technology, Department of Mechanics, China
  2. Xi’an University of Science and Technology, School of Energy Engineering, China
  3. Shandong Mining Machinery Group Co., Ltd. China
Download PDF Download RIS Download Bibtex

Abstract

Underground mining development is directly related to face drilling rig performance. Reducing operating costs and improving productivity are current and crucial topics for mining projects around the world within the development phase. Unlike past approaches, this article is based on variations of equipment availability and utilisation, and their impact on development plans success and costs decrease. To assess the influence of these parameters, daily field data were collected to identify major downtimes in normal cycles and apply adequate corrective measures to mitigate them. Additionally, this article presents the reader with a graphic illustration of the correlation between utilisation and development, including historical data. This paper was developed from October 2017 to March 2018. The result of this study seeks to identify when projects generate profits by comparing four situations with constant productivity, but variables such as the possession rate, maintenance fee, production and utilisation. Finally, it is demonstrated that success in mining projects, related to equipment, is proportional to the utilisation of the fleet, with the correct management of productivities.
Go to article

Bibliography

[1] S. Elevli, B. Elevli, Performance Measurement of Mining Equipments by Utilizing OEE. Acta Montan. Slovaca 15, 95-101 (2010),
[2] C. Hegde, K.E. Gray, Use of machine learning and data analytics to increase drilling efficiency for nearby wells. Journal of Natural Gas Science and Engineering 40, 327-335 (2017). https://doi.org/10.1016/j.jngse.2017.02.019
[3] B . A. Kansake, R. S. Suglo, Impact of Availability and Utilization of Drill Rigs on Production at Kanjole Minerals Limited. International Journal of Science, Environment and Technology 4, 6, 1524-1537.
[3] J. Valivaara, Automated Drilling Features for Improving Productivity and Reducing Costs in Underground Development. Global Trends, 9-11.
[4] B . Samatemba, L. Zhang, Evaluating and optimizing the effectiveness of mining equipment; the case of Chibuluma South underground mine. Journal of Cleaner Production 252 119697 (2020).
[5] D . Henao, MBA thesis, Aplicación de la Metodología Kaizen a las operaciones en la mina en la empresa de explotación de cobre Miner S.A. Universidad Eafit, Escuela de Administración, Medellín (2019).
Go to article

Authors and Affiliations

Sebastian Arenas Bermúdez
1
ORCID: ORCID
Cristian Gerardo Zapata Otalora
1
Jorge Martin Molina Escobar
1
ORCID: ORCID

  1. Universidad Nacional de Colombia, Mines Faculty, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Use of the poroelasticity theory by Biot in the description of rock behaviour requires the value of the e.g. Biot coefficient α to be determined. The α coefficient is a function of two moduli of compressibility: the modulus of compressibility of the rock skeleton Ks and the effective modulus of compressibility K. These moduli are determined directly on the basis of rock compressibility curves obtained during compression of a rock sample using hydrostatic pressure. There is also a concept suggesting that these compressibility moduli might be determined on the basis of results of the uniaxial compression test using the fact that, in the case of an elastic, homogeneous and isotropic material, the modulus of compressibility of a material is a function of its Young modulus and its Poisson ratio. This work compares the results obtained from determination of the Biot coefficient by means of results of compressibility test and uniaxial compression test. It was shown that the uniaxial compression test results are generally unsuitable to determine the value of the coefficient α. An analysis of values of the determined moduli of compressibility shows that whereas the values of effective moduli of compressibility obtained using both ways may be considered as satisfactorily comparable, values of the relevant rock skeleton moduli of compressibility differ significantly.
Go to article

Bibliography

[1] M.A. Biot, General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12, 155-164 (1941).
[2] M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182-185 (1945).
[3] A. Nur, J.D. Byerlee, An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids. J. Geophys. Res. 76 (26), 6414-6419 (1971).
[4] D . Fabre, J. Gustkiewicz J., Poroelastic Properties of Limestones and Sandstones under Hydrostatic Conditions. Int. J. Rock Mech. Min. Sci. 34 (1), 127-134 (1997).
[5] D . Fabre, J. Gustkiewicz, Influence of rock porosity on the Biot’s coefficient. In: Thismus et al. (eds.), Poromechanics – A Tribute to Maurice A. Biot. Procedings of the Biot Confference on Poromechanics, Louvain-la-Neuve (Belgium), 14-16 September 1998, Balkema, Rotterdam (1998).
[6] J . Gustkiewicz, Compressibility of rocks with a special consideration given to pore pressure. In: Thismus et al. (Eds.), Poromechanics – A Tribute to Maurice A. Biot. Proceedings of the Biot Conference on Poromechanics, Louvain-la-Neuve (Belgium), 14-16 September 1998, Balkema, Rotterdam (1998).
[7] M. Lion, F. Skoczylas, B. Ledésert, Determination of the main hydraulic and poroelastic properties of a limestone from Bourgogne, France. Int. J. Rock Mech. Min. Sci. 41, 915-925 (2004).
[8] J . Gustkiewicz, Objętościowe deformacje skały i jej porów (Volume deformations of the rock and its pores). Arch. Min. Sci. 34 (3), 593-609 (1989) (in Polish).
[9] J . Gustkiewicz, Synoptic view of mechanical behaviour of rocks under triaxial compression. In: Rock at Great Depth. Proceedings International Symposium ISRM-SPE, Pau, 28-31 VIII 1989, V. Maury, D. Fourmaintraux (Eds.), Balkema, Rotterdam, 3-10 (1989).
[10] J .B. Walsh, The effect of cracks on compressibility of rock. J. Geophys. Res. 70, 381-389 (1965).
[11] J .C. Jaeger, N.G.W. Cook, R.W. Zimmerman, Fundamentals of Rock Mechanics. 2007 Blackwell Publishing, Malden-Oxford-Carlton.
[12] H .F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. 2000 Princeton University Press, Princeton & Oxford.
[13] Z .T. Bieniawski, J.A. Franklin, M.J. Bernede, P. Duffaut, F. Rumpel, T. Horibe, F. Broch, E. Rodrigues, W.E. van Heerden, U.W. Vogler, I. Hansagi, J. Szlavin, B.T. Brady, D.U. Deere, I. Hawkes, D. Milovanovic, Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 16 (2), 135-140 (1979).
[14] K . Kovári, A. Tisa, H.H. Einstein, J.A. Franklin, Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revised Version. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 20 (6), 283-290 (1983).
[15] M. Długosz, J. Gustkiewicz, A. Wysocki, Apparatus for investigation of rock in three-axial state of stress. Part I. Characteristics of the apparatus and of the investigation method. Arch. Min. Sci. 26 (1), 17-28 (1981).
[16] M. Długosz, J. Gustkiewicz, A. Wysocki, Apparatus for investigation of rock in three-axial state of stress. Part II. Some investigation results concerning certain rocks. Arch. Min. Sci. 26 (1), 29-41 (1981).
[17] J . Nurkowski, An inductive strain sensor for operation in high pressure environments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 41, 175-180 (2004).
[18] R . Ulusay, J.A. Hudson (Eds.), Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. In: The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, 2007 Kozan Ofset Matbaacilik San. Ve Tic. Sti., Ankara.
[19] R. Přikryl, J. Prikrylová, M. Racek, Z. Weishauptová, K. Kreislová, Decay mechanism of indoor porous opuka stone: a case study from the main altar located in the St. Vitus Cathedral. Environmental Earth Sciences 76 (2017).
[20] J . Rychlewski, Note on the beginning of plastic deformation in a body under uniform pressure. Archives de Mécanique Appliquée 17 (3), 405-412 (1965).
Go to article

Authors and Affiliations

Andrzej Nowakowski
1
ORCID: ORCID
Janusz Nurkowski
1
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland

Instructions for authors

General information


It is essential for us that authors write and prepare their manuscripts according to the instructions and specifications listed below. Therefore, authors are strongly encouraged to read these instructions carefully before preparing a manuscript for submission.


Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in all fields of mining sciences which include:

- mining technologies,

- stability of mine workings,

- rock mechanics,

- geotechnical engineering and tunnelling,

- mineral processing,

- mining and engineering geology,

- mining geophysics,

- mining geodesy

- ventilation systems,

- environmental protection in mining,

- economical aspects in mining,

- mining machine science.

Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.


AMS publishes research and review articles, technical notes.

Papers suitable for publication in AMS are those which:

- contain original work - the main result is not published elsewhere neither by the authors nor somebody else, and is not currently under consideration for publication in any other journal,

- are focused on the core aims and scope of the journal,

- are clearly and correctly written in English.

Authors are required to contribute to the cost of publication – publication charge 1000 PLN or 250 Euro. There is no submission charge.


Electronic submission:

All submissions must be made electronically via Editorial System https://www.editorialsystem.com/editor/amsc/articles/list/?qt=NEW


Language

The papers should be written in English.


Length of paper

The research and review articles may not exceed 16 typewritten pages, technical notes -10 pages, format A4 including figures and tables.


Format

The initial submission should be sent as Microsoft World (Arial, 12 points, line spacing - 1,5) or pdf file with all drawings, pictures and tables placed in the text.

After acceptance the text (in Microsoft Word), figures and tables should be sent as separate files.


Layout of the manuscript

First and last name(s) of the author(s), title of the article, abstract, keywords, methodology and introduction to the topics, results, conclusions, acknowledgements and references. The subtitles should conform to the decimal system of numbering.


Abstracts

The abstract should briefly summarize the most important results reported in the paper (up to 200 words).


Keywords: 4-6 keywords


Formulae

Formulae should be prepared with Microsoft Equation, written clearly with distinct notation of upper and lower indices and parentheses, maintaining an uniform numbering.


Tables

Tables should be prepared as separate file in Microsoft World format.

Figures

If possible, the figures should be prepared with a vector graphics software (.cdr, .wmf, .al or .dxf formats) or as .eps, .jpg, .bmp (figures width no greater than 13.5 cm). Use Arial font for the comments on drawings in size 6-10 points. The photographs should be converted to high resolution scans in *.jpg or *.tiff format. Figures should be submitted as separate files.


References

A new type of literature provision has been in force since 2020 – modified vancouver style.

Please follow the instructions below.

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, title of the article (obligatory), journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: http://library.caltech.edu/reference/abbreviations/ everyone abbreviation should be end with a dot - example. Arch. Metall. Mater.] or book title; journal volume or book publisher; page spread; publication year in bracket, full DOI number).

Please note the correct layout punctation (commas and periods), and spaces.

Please note the arrangement of dots, commas and spaces.

First we write the initial of the name, dot, space, surname, volume must be written BOLD, at the name of the authors, do not write a word “and” write only a comma. We give the year of publication at the end of the sentence in brackets and DOI number (full notation and linked).

The use of DOI numbers (full notation and linked) is mandatory for each paper and should be formatted as shown in the examples below:

Samples

Journals:

[1] L.B. Magalas, Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer . Arch. Metall. Mater. 60 (3), 2069-2076 (2015). DOI: https://doi.org/10.1515/AMM-2015-0350

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large Magnetic Field-Induced Work output in a NiMgGa Seven-Lavered Modulated Martensite. Appl. Phys. Lett. 107, 152407 (2015). DOI: https://doi.org/10.1063/1.4933303

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, Suppression of Interdiffusion in Copper/Tin thin Films. J. Mater. Eng. Perform. (2012). DOI: https://doi.org/10.1007/s11665-011-0090-2.

Books:

[4] K.U. Kainer (Ed.), Metal Matrix Composites, Wiley-VCH, Weinheim (2006).

[5] K. Szacilowski, Infochemistry: Information Processing at the Nanoscale, Wiley (2012).

[6] L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, Springer, New York (2008).

Proceedings or chapter in books with editor(s):

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major, P. Zięba (Eds.), Foundation of Materials Design 2006, Research Signpost (2006).

Internet resource:

[8] https://www.nist.gov/programs-projects/crystallographic-databases, accessed: 17.04.2017

Academic thesis (PhD, MSc):

[9] T. Mitra, PhD thesis, Modeling of Burden Distribution in the Blast Furnace, Abo Akademi University, Turku/Abo, Finland (2016).


Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "Copyright agreement", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).


License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/).

This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

This page uses 'cookies'. Learn more