@ARTICLE{Berbesz_Anna_Parametric_2024, author={Berbesz, Anna and Sadowski, Kajetan and Onyszkiewicz, Jakub}, volume={vol. 70}, number={No 4}, pages={163 –185}, journal={Archives of Civil Engineering}, howpublished={online}, year={2024}, publisher={WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES}, abstract={Mobile structures are one of directions of shaping recreational facilities. In terms of their geometry, geodesic domes and quasi-dome systems deserve special attention. Panel shell domes were the subject of consideration, e.g. Buckminster Fuller and David Geiger, whose patent solutions are referred to in the article. Combining a system of layered self-supporting panels with the geometry of geodesic domes was one of the significant construction and material challenges as part of the ReSa research and the respective implementation project carried out at the Wroclaw University of Technology in 2021–2023 as part of a competition organized by The National Center of Research and Development. Concerning the preliminary analysis, it was necessary to determine the types of dome solutions intended for the implementation of research models. The article presents a detailed analysis of shell geodesic domes with different geometries. The differentiation resulted from the type and the rotation of the base polyhedron relative to the base plane. The main objective of the study was to rank the types of panel geodesic domes in relation to their use in the construction of mobile recreational facilities. The development of 12 virtual dome models made it possible to evaluate their parameters in five main research areas – energy efficiency, environmental impact, support reactions, ergonomics and complexity of prefabrication and assembly process. An extensive evaluation of the parameters in each field, a summary within each domain, and a global evaluation of the shells were performed. The study allowed to develop a hierarchy of panel dome types in relation to the assumed criteria and to check the possibility of using multi-aspect, parametric evaluation. In addition, a detailed study of the geometrical parameters of the shells carried out as part of the indirect tests made it possible to identify the most effective structures in this aspect. This study has proven that parametric evaluation of criteria is a good tool for evaluating shell geodesic domes. This method is developing both in the field of scientific research and in terms of the implementation of domes. It allows for flexible introduction of basic data (here: energy efficiency, environmental impact, support reactions, ergonomics and complexity of prefabrication and assembly process), determination of coefficients and the use of additional weight criteria for individual research fields in relation to the assumed goal.}, title={Parametric evaluation as a tool for evaluating shell geodesic domes. Modelling the Fuller Dome with ReSa mobile recreational facility panels}, type={Article}, URL={http://journals.pan.pl/Content/133448/11_2k.pdf}, doi={10.24425/ace.2024.151886}, keywords={geodesic shell structure, Buckminster Fuller‘s dome, self-supporting sandwich panels}, }