@ARTICLE{Can_Şenel_M._Investigation_2021, author={Can Şenel, M. and Gürbüz, M.}, volume={vol. 66}, number={No 1}, journal={Archives of Metallurgy and Materials}, pages={97-106}, howpublished={online}, year={2021}, publisher={Institute of Metallurgy and Materials Science of Polish Academy of Sciences}, publisher={Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences}, abstract={Nowadays, aluminum-based composites have been produced by pure alumina (Al2O3) or pure graphene nanoplatelets (GNPs) in aluminum matrix because of the high compressive strength of alumina and the solid lubricant properties of graphene. However, there are no studies on the influence of both alumina and graphene reinforced aluminum composites. In this study, Al-Al2O3 and Al-Al2O3-GNPs composites were reinforced with pure alumina (between 0 and 30 wt.%), pure graphene (0, 0.1, 0.3, 0.5 wt.%), and their hybrid forms (Al2O3-GNPs) by the powder metallurgy method. This method involved ultrasonic dispensing, mixing, filtering, drying, pressing, and sintering processes. From the test results, the micro Vickers hardness of pure aluminum (28.2±1 HV) improved to 51.5±0.8 HV (Al-30Al2O3) and 63.1±1 HV (Al-30Al2O3-0.1GNPs). Similarly, the ultimate compressive strength (UCS) enhanced from 92.4±4 MPa (pure aluminum) to 165±4.5 MPa (Al-30Al2O3) and 188±5 MPa (Al-30Al2O3-0.1GNPs), respectively. In conclusion, the Vickers hardness and ultimate compressive strength of aluminum hybrid composites improved up to 0.1 wt.% graphene content. After 0.1 wt.% graphene content, these mechanical properties decreased because of the clumping of graphene nanoparticles.}, type={Article}, title={Investigation on Mechanical Properties and Microstructures of Aluminum Hybrid Composites Reinforced with Al2O3/GNPs Binary Particles}, URL={http://journals.pan.pl/Content/117793/PDF/AMM-2021-1-13-Senel.pdf}, doi={10.24425/amm.2021.134764}, keywords={Composite, aluminum, graphene, alumina, hybrid}, }