@ARTICLE{Paszkiewicz_Oliwia_A_2023, author={Paszkiewicz, Oliwia and Wang, Kunlei and Kordas, Marian and Rakoczy, Rafał and Kowalska, Ewa and Markowska-Szczupak, Agata}, volume={vol. 44}, number={No 3 (24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland.)}, journal={Chemical and Process Engineering: New Frontiers}, pages={e22}, howpublished={online}, year={2023}, publisher={Polish Academy of Sciences Committee of Chemical and Process Engineering}, abstract={Environmental contamination is an urgent topic to be solved for sustainable society. Among various pollutants, microorganisms are believed to be the most dangerous and difficult to be completely inactivated. In this research, a new hybrid photoreactor assisted with rotating magnetic field (RMF) has been proposed for the efficient removal of two types of bacteria, i.e., gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis. Three selfsynthesized photocatalysts were used, based on commercial titanium(IV) oxide - P25, homogenized and then modified with copper by photodeposition, as follows: 0.5Cu@HomoP25, 2.0Cu@HomoP25 and 5.0Cu@HomoP25 containg 0.5, 2.0 and 5.0 wt% of deposited copper, respectively. The response surface methodology (RSM) was employed to design the experiments and to deteremine the optimal conditions. The effects of various parameters such as copper concentration [% w/w], time [h] and frequency of RMF [Hz] were studied. Results: Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model ((R2=0.86 for E. coli and R2=0.69 for S. epidermidis). Experimental results showed that with increasing copper concentration, time and decreasing of frequency of RMF removal efficiency was increased. Accordingly, the water disinfection efficiency of 100% in terms of the independent variables was optimized, including cooper concentration c =5 % and 2.5% w/w, time t = 3 h and 1.3 h and frequency of rotating magnetic field f = 50 Hz and 26.6 for E.coli and S. epidermidis, respectively. This study showed that response surface methodology is a useful tool for optimizing the operating parameters for photocatalytic disinfection process.}, type={Article}, title={A new magnetic-hybrid photoreactor for photocatalytic water disinfection}, URL={http://journals.pan.pl/Content/128657/PDF/e22-Accepted%20Article-2.pdf}, doi={10.24425/cpe.2023.146724}, keywords={photocatalysis, rotating magnetic field, titanium dioxide, disinfection, water purification}, }