@ARTICLE{Jurkiewicz_Martyna_The_2023, author={Jurkiewicz, Martyna and Musik, Marlena and Pełech, Robert}, volume={vol. 44}, number={No 4 (24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy)}, journal={Chemical and Process Engineering: New Frontiers}, pages={e47}, howpublished={online}, year={2023}, publisher={Polish Academy of Sciences Committee of Chemical and Process Engineering}, abstract={The influence of a fixed adsorption bed height on the adsorption process was studied using acetone, ethyl acetate, toluene, and n-butyl acetate as a gaseous adsorbate mixture. All experiments were conducted under the same gas flow and temperature conditions. Concentrations of adsorbates were monitored using gas chromatography with a flame ionization detector. Activated carbon WG-12 (Grand Activated Sp. z o.o) was selected as the adsorbent, and the following heights of the fixed adsorption bed were used: 0.8, 1.6, 3.2, and 4.8 cm. The results of the study allowed to deduce that as the height of the fixed adsorption bed increased, the degree of displacement of adsorbate molecules from the bed strengthened. In addition, it was found that both the bed breakthrough time increased linearly with a height rise of the fixed adsorption bed. The process carried out on a fixed adsorption bed with a height of 0.8 cm was characterized by an undeveloped mass transfer zone, as well as the complete displacement of the most volatile components (acetone and ethyl acetate). The utilization rate of the fixed adsorption bed also increased as the height of the adsorption bed went up. However, at a certain bed height, the bed breakthrough curves were formed and the adsorption capacity did not change significantly, solely the bed breakthrough time increased.}, type={Article}, title={The effect of fixed adsorption bed height on adsorption of gaseous mixture of volatile organic compounds}, URL={http://journals.pan.pl/Content/129347/PDF/e47_Accepted%20Article.pdf}, doi={10.24425/cpe.2023.147406}, keywords={volatile organic compounds, adsorption bed height, breakthrough curves, breakthrough time}, }