Abstract
The paper presents the results of scratch tests on the connection of the Al2O3+40%TiO2 coating with the AZ91 alloy casting. The Al2O3+40%TiO2 coating was applied to the AZ91 alloy casting using the APS (Atmospheric Plasma Spraying) method. Microstructure studies and chemical composition analysis of the substrate material and the Al2O3+40%TiO2 coating were conducted. The analysis of the coating to substrate connection was based on microstructure examinations before and after the scratch test. The scratch was made in the direction from the substrate to the coating. In the scratch test, the depth and width of the scratch were determined. Based on the conducted research, it was found that the Al2O3+40%TiO2 coating has a very good quality connection with the AZ91 alloy substrate. The obtained lower values of the geometric parameters of the scratch (width and depth) for the Al2O3+40%TiO2 coating, compared to the AZ91 alloy substrate, indicate the potential use of the Al2O3+40%TiO2 coating to improve the scratch resistance of elements and machine parts made of the AZ91 alloy. The effect of the indenter's intervention during scratching is the degradation of the microstructure of the AZ91 alloy and the Al2O3+40%TiO2 coating. In this process, cracking plays the main role. In the case of the Al2O3+40%TiO2 coating, the effect of the indenter's action is a network of microcracks, while in the microstructure of the AZ91 alloy, cracks appeared in large precipitates of the γ-Mg17(Al, Zn)12 phase.
Go to article
Bibliography
Lai, L., Wu, H., Mao, G., Li, Z., Zhang, L. & Liu, Q. (2022). Microstructure and corrosion resistance of two-dimensional TiO2/MoS2 hydrophobic coating on AZ31B magnesium alloy. Coatings. 12(10), 1488, 1-12. DOI: 10.3390/coatings12101488. Xi, B., Fang, G. & Xu, S. (2018). Multiscale mechanical behavior and microstructure evolution of extruded magnesium alloy sheets: experimental and crystal plasticity analysis. Materials Characterization. 135, 115-123. DOI: 10.1016/j.matchar.2017.11.034. Yang, Y., Xiong, X., Chen, J., Peng, X., Chen, D. & Pan, F. (2021). Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys. 9(3), 705-747. DOI: 10.1016/j.jma.2021.04.001. Wang G.G. & Weiler J.P. (2023). Recent developments in high pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys. 11(1), 78-87. DOI: doi.org/10.1016/j.jma.2022.10.001. Liu B., Yang J., Zhang X., Yang Q., Zhang J., & Li X. (2022). Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 11(1), 15-47. DOI: 10.1016/j.jma.2022.12.015. Sun, H. & Ma, S. (2016). Microstructural characteristics and protection performances of plasma-sprayed Al2O3–Al composite coatings on AZ91D magnesium alloy. Science and Engineering of Composite Materials. 23(5), 467-474. DOI: 10.1515/secm-2014-0151. Xin, Y., Huo, K., Hu, T., Tang, G. & Chu, P.K. (2009). Mechanical properties of Al2O3/Al bi-layer coated AZ91 magnesium alloy. Thin Solid Films. 517(17), 5357-5360. DOI: 10.1016/j.tsf.2009.03.101. Chang, S.H., Niu, L., Su, Y., Wang, W., Tong, X. & Li, G. (2016). Effect of the pretreatment of silicone penetrant on the performance of the chromium-free chemfilm coated on AZ91D magnesium alloys. Materials Chemistry and Physics. 171, 312-317. DOI: doi.org/10.1016/j.matchemphys.2016.01.022. Liu, C., Liang, J., Zhou, J., Wang, L. & Li, Q. (2015). Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy. Applied Surface Science. 343, 133-140. DOI: 10.1016/j.apsusc.2015.03.067. Basha, G.M.T., Srikanth, A. & Venkateshwarlu, B. (2020). A critical review on nano structured coatings for alumina-titania (Al2O3-TiO2) deposited by air plasma spraying process (APS). Materials Today: Proceedings. 22(4), 1554-1562. DOI: doi.org/10.1016/j.matpr.2020.02.117. Michalak, M., Łatka, L., Sokołowski, P. & Ambroziak, A. (2019). Investigations of microstructure and selected mechanical properties of Al2O3+ 40 wt.% TiO2 coatings deposited by Atmospheric Plasma Spraying (APS). Welding Technology Review. 91(8), 7-11. DOI: 10.26628/wtr.v91i8.1068. Ahmed, I. & Abdel Salam, H. (2011). Microstructure, corrosion, and fatigue properties of alumina-titania nanostructured coatings. Journal of Surface Engineered Materials and Advanced Technology. 1(3), 101-106. DOI: 10.4236/jsemat.2011.13015. Łatka, L., Niemiec, A., Michalak, M. & Sokołowski, P. (2019). Tribological properties of Al2O3+TiO2 coatings manufactured by plasma spraying. Tribologia. 283(1), 19-24. DOI: 10.5604/01.3001.0013.1431. Çelik, İ. (2016). Structure and surface properties of Al2O3–TiO2 ceramic coated AZ31 magnesium alloy. Ceramics International. 42(12), 13659-13663. DOI: 10.1016/j.ceramint.2016.05.162. Bayram, T., Karabaş, M. & Kayalı, Y. (2023). Deposition and study of plasma sprayed Al2O3-TiO2 coatings on AZ31 magnesium alloy. European Mechanical Science. 7(1), 35-40. DOI: 10.26701/ems.1175394. Yılmaz, R., Kurt, A.O., Demir, A. & Tatlı, Z. (2007). Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating. Journal of the European Ceramic Society. 27(2-3), 1319-1323. DOI: 10.1016/j.jeurceramsoc.2006.04.099. Toma, F.L., Stahr, C.C., Berger, L.M., Saaro, S., Herrmann, M., Deska, D. & Michael, G. (2010). Corrosion resistance of APS-and HVOF-sprayed coatings in the Al2O3-TiO2 Journal of Thermal Spray Technology. 19, 137-147. DOI: 10.1007/s11666-009-9422-2. Habib, K.A., Saura, J.J., Ferrer, C., Damra, M.S., Giménez, E. & Cabedo, L. (2006). Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surface and Coatings Technology. 201(3-4), 1436-1443. DOI: 10.1016/j.surfcoat.2006.02.011. Grimm, M., Conze, S., Berger, L.M., Paczkowski, G., Lindner, T. & Lampke, T. (2020). Microstructure and sliding wear resistance of plasma sprayed Al2O3-Cr2O3-TiO2 ternary coatings from blends of single oxides. Coatings. 10(1), 42, 1-12. DOI: 10.3390/coatings10010042.
Go to article