Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | Ahead of print |

Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Go to article

Authors and Affiliations

O. Gursoy
1
A. Nordmak
2
F. Syvertsen
2
M. Colak
3
K. Tur
4
D. Dispinar
5

  1. University of Padova, Italy
  2. SINTEF, Norway
  3. University of Bayburt, Turkey
  4. Atilim University, Turkey
  5. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloys belonging to the group of modern metallic materials used in many industries, including the aerospace industries. Induction crucible vacuum furnaces and induction furnaces with cold crucible are most commonly used for their smelting. When operating these devices, one can deal with an adverse phenomenon of decrease in the content of alloy elements that are characterized by higher equilibrium vapour pressure than the matrix metal or titanium, in the metal bath. In the paper, results of the study on aluminium evaporation from the Ti-Al-Nb, Ti-Al-V and Ti-Al alloys (max 6.2 % wt.) during smelting in a vacuum induction melting (VIM) furnace are presented. The experiments were performed at 10 to 1000 Pa for 1973 K and 2023 K. A significant degree of aluminium loss has been demonstrated during the analysed process. The values of relative aluminium loss for all the alloys ranged from 4 % to 25 %. Lowering the pressure in the melting system from 1000 Pa to 10 Pa resulted in increased values of aluminium evaporation flux from 4.82⋅10-5 to 0.000327 g⋅cm-2⋅s-1 for 1973 K and from 9.28⋅10-5 to 0.000344 g⋅cm-2⋅s-1 for 2023 K. The analysis of the results obtained took into account the value of the actual surface of the liquid metal. In the case of melting metals in an induction furnace, this surface depends on the value of power emitted in the charge. At greater power, we observe a significant increase in the bath surface due to the formation of a meniscus.
Go to article

Authors and Affiliations

A. Smalcerz
1
L. Blacha
1
J. Łabaj
1

  1. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an overview of a research on six practical cases that were solved in a precise casting company where parts are cast by the mean of the low-wax casting method (investment casting) in order to decrease poor quality production. The steel cast parts production technology by the lost-wax method requires the detailed work procedures observation. On the base of statistical processing data of given types of casting products, it was possible to assess the significance of each particular checking events by using the statistical hypothesis testing. The attention was focused on wax and ceramic departments. The data in technological flow were compared before and after the implementation of the change and statistical confirmative influences were assessed. The target consisted in setting such control manners in order to get the right conditions for decreasing poor quality parts. It was evidenced that the cast part defect cause correct identification and interpretation is important.
Go to article

Authors and Affiliations

R. Lakomá
1
L. Čamek
2
P. Lichý
2
I. Kroupová
1
F. Radkovský
1
T. Obzina
1

  1. VSB - Technical university of Ostrava, Czech Republic
  2. Brno University of Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Go to article

Authors and Affiliations

Zou Chaoxin
1
Li Rong
1
Xie Zhiping
1
Su Ming
1
Zeng Jingshi
2
Ji Xu
1
Ye Xiaoli
1
Wang Ye
1

  1. Guizhou Normal University, China
  2. Guizhou Zhenhua New Material Co., Ltd., China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research related to the possibility of inoculation of the AZ91 magnesium alloy casted into ceramic moulds by gadolinium. Effects of gadolinium content (0.1–0.6 wt%) on microstructure of the AZ91 alloy under as-cast state were investigated. The influence of the inoculator on the formation of the microstructure investigated by means of the thermal and derivative analysis by analysing the thermal effects arising during the alloy crystallization resulting from the phases formed. The degree of fragmentation of the microstructure of the tested alloys was assessed by means of the light microscopy studies and an image analysis with statistical analysis was performed. Conducted analyses have aimed at examining on the effect of inoculation of the gadolinium on the differences between the grain diameters and average size of each type of grain by way of measuring their perimeters of all phases, preliminary αMg and eutectics αMg+γ(Mg17Al12) in the prepared examined material.
Go to article

Authors and Affiliations

C. Rapiejko
1
D. Mikusek
1
P. Just
1
T. Pacyniak
1

  1. Lodz University of Technology, Department of Materials Engineering and Production Systems, ul. Stefanowskiego 1, 90-924 Łódź, Poland

This page uses 'cookies'. Learn more