Applied sciences

Archives of Mining Sciences

Content

Archives of Mining Sciences | 2023 | vol. 68 | No 1

Download PDF Download RIS Download Bibtex

Abstract

Shifting masses in a confined space in the company of other machines and devices, which limits the manoeuvring and transport area, poses a significant problem in every field of industry, especially with underground mining. The works involved in transporting and manoeuvring masses in underground workings are challenging and are most often performed using various auxiliary machines or manually. Hence the need arose to develop a device carrying out activities related to the shifting of masses with the assumed maximum value. The device was created as a result of cooperation between FAMA sp. z o.o. and the AGH University of Science and Technology in Kraków, Poland. The mining modular transport and assembly unit (MZT-M) enables assembling and transporting various masses, especially the elements of the roadway support in the face. The primary function of this device is its movement in the excavation along with the transported mass and delivering it to a specific place. Therefore, an important issue is to ensure the module’s stability in different phases of its operation (lifting, transport, manoeuvring, feeding, lowering) due to the limited space in the excavation. That is why an analytical model and specialised software were created to determine the design parameters of the device as a function of its operating phases, especially the counterweight’s mass. As previously mentioned, an analytical model (physical, mathematical) with equations and applications written in Microsoft Visual Studio and Matlab was used for this purpose. It is beneficial at the design or construction changes stage. Calculation results are documented in the form of numerical summaries and graphs.
Go to article

Authors and Affiliations

Krzysztof Krauze
1
ORCID: ORCID
Ryszard Klempka
1
ORCID: ORCID
Kamil Mucha
1
ORCID: ORCID
Tomasz Wydro
1
ORCID: ORCID

  1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Feldspar is a basic requirement for glass, ceramics, and other industries. The presence of iron in feldspar is one of the challenging aspects of feldspar processing. To improve the quality of feldspar for use in various industries, dry magnetic separation is one of the best techniques for reducing iron in feldspar, especially in arid regions to overcome the common problem of lack of water resources as well as to reduce the operational cost of the enrichment process. Therefore, dry magnetic separation experiments were carried out to remove the iron content from feldspar ore in the Wadi Umm Harjal area in Egypt to meet the specifications required for different industries. The sample was analysed using XRD, XRF, and optical microscopy, which revealed that it is a mixture of potassium feldspar (microcline/orthoclase), albite, and quartz in the presence of hematite mineral serving as the main iron impurities in addition to the free silica content. The effect of parameters on the activity of the dry high magnetic separators was investigated in addition to cleaning the products. The iron oxide reduced from 0.69% in the head sample to 0.08% after dry high-intensity magnetic separation, and the whiteness increased from 82.01% in the head sample to 95.97% in the separated concentrate. The experimental results showed that there is a possibility to obtain feldspar concentrates with low content of Fe2O3 from the area where according to the results, approximately 88.4% of iron was removed from the head sample.
Go to article

Authors and Affiliations

Khaled Yassin
1
ORCID: ORCID
Mahmoud Ahmed
2
ORCID: ORCID
Mohamed Gamal Eldin Khalifa
3
ORCID: ORCID
Ayman Aly Hagrass
3
ORCID: ORCID

  1. Central Metallurgical Research & Development Institute (CMRDI), Helwan, Cairo, Egypt
  2. Egyptian Mineral Resources Authority (EMRA), Abbasia, Cairo, Egypt
  3. Tabbin Institute for Metallurgical Studies (TIMS), Helwan, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Successful mine planning is necessary for the sustainability of mining activities. Since this process depends on many criteria, it can be considered a multi-criteria decision making (MCDM) problem. In this study, an integrated MCDM method based on the combination of the analytic hierarchy process (AHP) and the technique for order of preference by similarity to the ideal solution (TOPSIS) is proposed to select the optimum mine planning in open-pit mines. To prove the applicability of the proposed method, a case study was carried out. Firstly, a decision-making group was created, which consists of mining, geology, planning engineers, investors, and operators. As a result of studies performed by this group, four main criteria, thirteen sub-criteria, and nine mine planning alternatives were determined. Then, AHP was applied to determine the relative weights of evaluation criteria, and TOPSIS was performed to rank the mine planning alternatives. Among the alternatives evaluated, the alternative with the highest net present value was selected as the optimum mine planning alternative. It has been determined that the proposed integrated AHP-TOPSIS method can significantly assist decision-makers in the process of deciding which of the few mine planning alternatives should be implemented in open-pit mines.
Go to article

Authors and Affiliations

Ali Can Ozdemir
1
ORCID: ORCID

  1. Çukurova University, Department of Mining Engineering, 01250, Adana, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, geotechnical specialists are focused on reinforcing soil engineering parameters using innovative and environmentally friendly methods. Microbial-Induced Calcite Precipitation is a ground improvement method for modifying soil strength, permeability, and stiffness; therefore, it can be vital to study the effective factors on the technique’s efficiency and cost reduction. This study examined how biologically treated sands subjected to undrained triaxial loading responded to simultaneous changes in cementation solution molarity, optical density (OD600), and curing time. The triaxial experiments showed that the strength increased with the rise in the mentioned parameters. While the solution molarity and optical density had the highest and lowest effect on the soil improvement process, respectively, the optical density role was considerably low when the molarity was high. Increasing the molarity of the cementation solution resulted in a 45% increase in the peak stress ratio, while the optical density and curing time were constant. On the other hand, similar behaviour of dense sand and change in the response of cemented soil from strain-hardening to strain-softening were other notable observations of this study. In addition, the peak stress ratio at low strains increased with increasing the cementation level and then decreased to close to the amount of untreated sand with increasing strain.
Go to article

Authors and Affiliations

Seyed Abdollah Ekramirad
1
ORCID: ORCID
Mohammad Azadi
1
ORCID: ORCID
Nasser Shamskia
1
ORCID: ORCID

  1. Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Download PDF Download RIS Download Bibtex

Abstract

In this research, graphene oxide was introduced as an efficient flotation reagent for the selective separation of molybdenite from chalcopyrite. The performance of graphene oxide and its adsorption mechanism on chalcopyrite were investigated by flotation tests, FTIR spectra, and XPS measurements. First, graphene oxide was synthesised, and then its performance was evaluated by SEM, XRD, and EDX. Flotation tests were carried out in a hallimond flotation cell with a volume of 300 ml. Optimum flotation values were achieved at pH = 9 by adding 250 g/t of PAX (Potassium Amyl Xanthate) as a collector and 50 g/t of A65 (Poly Propylene Glycol) as a frother. The results showed high recovery, around 80% for molybdenite, while chalcopyrite was depressed in high amounts by employing 11 kg/t of graphene oxide as a depressant. Compared to common chalcopyrite depressants such as NaHS, Na2S, and C2H3NaO2S, graphene oxide had a higher potency in depressing, which can be applied as a green-depressant in the separation of molybdenite from chalcopyrite by the flotation process. Also, the validity of the depressing effect on chalcopyrite was verified by XPS and FTIR spectra.
Go to article

Authors and Affiliations

Afshin Namiranian
1
ORCID: ORCID
Mohammad Noaparast
1
ORCID: ORCID
Sied Ziaedin Shafaei Tonkaboni
1
ORCID: ORCID

  1. University of Tehran, Amirabad-Shomali, Kooye Daneshgah, 1915656535, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

This study aims at developing a machine learning based classification and regression-based models for slope stability analysis. 1140 different cases have been analysed using the Morgenstern price method in GeoSlope for non-homogeneous cohesive slopes as input for classification and regression-based models. Slope failures presents a serious challenge across many countries of the world. Understanding the various factors responsible for slope failure is very crucial in mitigating this problem. Therefore, different parameters which may be responsible for failure of slope are considered in this study. 9 different parameters (cohesion, specific gravity, slope angle, thickness of layers, internal angle of friction, saturation condition, wind and rain, blasting conditions and cloud burst conditions) have been identified for the purpose of this study including internal, external and factors representing the geometry of the slope has been included. Four different classification algorithms namely Random Forest, logistic regression, Support Vector Machine (SVM), and K Nearest Neighbor (KNN) has been modelled and their performances have been evaluated on several performance metrics. A similar comparison based on performance indices has been made among three different regression models Decision tree, random forest, and XGBoost regression.
Go to article

Authors and Affiliations

Sudhir Kumar Singh
1
ORCID: ORCID
Debashish Chakravarty
1

  1. Indian Institute of Technology, Kharagpur, India
Download PDF Download RIS Download Bibtex

Abstract

When mining coal from the working face, the main roof withstands the overlying strata. The main roof’s first weighting and periodic weighting may cause accidents, such as crushing the working face hydraulic supports. A mechanical model of the main roof was constructed, and the contributing factors of first and periodic weights on the main roof were examined in order to prevent such accidents. The thickness of the main roof was found as the most contributory factor to the main roof’s stability. Therefore, a new directional roof crack (DRC) technique is proposed, which produces directional cracks in the main roof through directional blasting and makes part of it collapse in advance so as to reduce the thickness and relieve the first and periodic weighting. To verify the effectiveness of DRC, the mechanism of DRC was analysed. A mechanical model of the hydraulic support was constructed, and the DRC techniques were tested on-site. Field experiments with a complete set of monitoring schemes showed that, with DRC technology, the roof periodic weighting interval decreased by 35.36%, and the hydraulic support pressure decreased by 17.56%. The theoretical analysis was consistent with the measured results. Therefore, the DRC technology is feasible and effective to ensure mining safety at the working face.
Go to article

Authors and Affiliations

Jun Zhang
1
ORCID: ORCID
Jianning Liu
1
ORCID: ORCID
Yajun Wang
2
ORCID: ORCID
Gang Yang
1
ORCID: ORCID
Shilin Hou
1
ORCID: ORCID
Yanjun Wang
3
ORCID: ORCID
Manchao He
1
ORCID: ORCID
Jun Yang
1
ORCID: ORCID

  1. China University of Mining & Technology (Beijing), State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing 100083, China
  2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  3. ShanXiYinFeng Science & Technology CO. LTD, Taiyuan 030000, China
Download PDF Download RIS Download Bibtex

Abstract

The rim of a post-exploitation basin is a particularly dangerous zone for buildings. This is due to the impact of mining on the nearby buildings, which persists even after exploitation activities are finished. The rim of the basin remains constantly deformed. This paper presents numerical analyses of buildings located in Marklowice (Silesian Voivodeship, Poland). They are located in an area that was exploited for mining, above the initial exploitation edge on the rim of the basin. The area of the analysed buildings was geodetically monitored during mining works. The results of the measurements allowed the observation of changes in terrain deformation indicators, together with the determination of the settlement’s final values after the operation was completed. Knowledge of the results enabled the preparation of numerical analyses of buildings with the use of the finite element method (FEM), the purpose of which was to determine the residual stresses in the structures after the end of the exploitation. The results are presented in the form of stress maps, which show changes in the internal forces in buildings left by mining operations. Specific examples are used. Two residential two-storey buildings were analysed; they were built using traditional brick methods, with a single-storey outbuilding. All of the analysed buildings are located in the mining commencement zone, in which the deformation of the surface has not faded away.
Go to article

Authors and Affiliations

Leszek Szojda
1
ORCID: ORCID
Łukasz Kapusta
2
ORCID: ORCID

  1. Silesian University of Technology, Department of Structural Engineering, Akademicka 5,44-100, Gliwice, Poland
  2. Kielce University of Technology, Faculty of Environmental Engineering, Geomatics and Renewable Energy, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

For the prevention and control of rockburst in underground coal mines, a detailed assessment of a rockburst hazard area is crucial. In this study, the dependence between stress and elastic wave velocity of axially-loaded coal and rock samples was tested in a laboratory. The results show that P-wave velocity in coal and rock is positively related to axial stress and can be expressed by a power function. The relationship showed that high stress and a potential rockburst area in coal mines can be determined by the elastic wave velocity anomaly assessment with passive seismic velocity tomography. The principle and implementation procedure of passive seismic velocity tomography for elastic wave velocity were introduced, and the assessment model of rockburst hazard using elastic wave velocity anomaly was built. A case study of a deep longwall panel affected by rockbursts was introduced to demonstrate the effectiveness of tomography. The rockburst prediction results by passive velocity tomography closely match the dynamic phenomenon in the field, which indicates the feasibility of elastic wave velocity anomaly for rockburst hazard prediction in coal mines.
Go to article

Authors and Affiliations

Kunyou Zhou
1 2
ORCID: ORCID
Piotr Małkowski
3
ORCID: ORCID
Linming Dou
4
ORCID: ORCID
Ke Yang
1
ORCID: ORCID
Yanjiang Chai
4
ORCID: ORCID

  1. Anhui University of Science and Technology, School of Mining Engineering, Huainan 232001, China
  2. Engineering Laboratory for Safe and Precise Coal Mining of Anhui Province, Huainan 232001,China
  3. AGH University of Science and Technology, al. Mickiewicza Av. 30, 30-059 Krakow, Poland
  4. China University of Mining and Technology, School of Mines, Xuzhou 221116, China
Download PDF Download RIS Download Bibtex

Abstract

Many open-pit mines are gradually converted to underground mining, the problem of roadway surrounding rock damage caused by expansive soft rock is becoming increasingly problematic. To study the seasonal evolution of expansive rock mass containing clay minerals, an underground mine transferred from an open-pit was selected as the experimental mine. The experimental results of SEM electron microscopy and X-ray diffraction confirmed that the surrounding rock of the main haulage roadway contains a large number of expansive clay minerals. The expansive grade of the main transport roadway’s surrounding rock could then be identified as the medium expansive rock mass, which has a large amount of exchangeable cation and strong water absorption capacity, based on the combined test results of dry saturated water absorption and free expansion deformation. The water swelling can cause the roadway to considerably deform, and then the surrounding rock will have strong rheological characteristics. From the research results in the text, the seasonal evolution law of the main haulage roadway in the experimental mine was obtained, and the deformation law of the expansive rock mass under different dry and wet conditions was revealed. The research results provide a reference for studying the stability evolution law of expansive soft rocks in underground mines.
Go to article

Authors and Affiliations

Hongdi Jing
1 2
ORCID: ORCID
Fuming Qu
3
ORCID: ORCID
Xiaobo Liu
3
ORCID: ORCID
Guangliang Zhang
4
Xingfan Zhang
1 2
Xinbo Ma
4

  1. Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang 110016, China
  2. Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang110169, China
  3. University of Science and Technology Beijing, Beijing 100083, China
  4. Northeastern University, Shenyang 100083, China

Instructions for authors

General information


It is essential for us that authors write and prepare their manuscripts according to the instructions and specifications listed below. Therefore, authors are strongly encouraged to read these instructions carefully before preparing a manuscript for submission.


Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in all fields of mining sciences which include:

- mining technologies,

- stability of mine workings,

- rock mechanics,

- geotechnical engineering and tunnelling,

- mineral processing,

- mining and engineering geology,

- mining geophysics,

- mining geodesy

- ventilation systems,

- environmental protection in mining,

- economical aspects in mining,

- mining machine science.

Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.


AMS publishes research and review articles, technical notes.

Papers suitable for publication in AMS are those which:

- contain original work - the main result is not published elsewhere neither by the authors nor somebody else, and is not currently under consideration for publication in any other journal,

- are focused on the core aims and scope of the journal,

- are clearly and correctly written in English.

Authors are required to contribute to the cost of publication – publication charge 1000 PLN or 250 Euro. There is no submission charge.


Electronic submission:

All submissions must be made electronically via Editorial System https://www.editorialsystem.com/editor/amsc/articles/list/?qt=NEW


Language

The papers should be written in English.


Length of paper

The research and review articles may not exceed 16 typewritten pages, technical notes -10 pages, format A4 including figures and tables.


Format

The initial submission should be sent as Microsoft World (Arial, 12 points, line spacing - 1,5) or pdf file with all drawings, pictures and tables placed in the text.

After acceptance the text (in Microsoft Word), figures and tables should be sent as separate files.


Layout of the manuscript

First and last name(s) of the author(s), title of the article, abstract, keywords, methodology and introduction to the topics, results, conclusions, acknowledgements and references. The subtitles should conform to the decimal system of numbering.


Abstracts

The abstract should briefly summarize the most important results reported in the paper (up to 200 words).


Keywords: 4-6 keywords


Formulae

Formulae should be prepared with Microsoft Equation, written clearly with distinct notation of upper and lower indices and parentheses, maintaining an uniform numbering.


Tables

Tables should be prepared as separate file in Microsoft World format.

Figures

If possible, the figures should be prepared with a vector graphics software (.cdr, .wmf, .al or .dxf formats) or as .eps, .jpg, .bmp (figures width no greater than 13.5 cm). Use Arial font for the comments on drawings in size 6-10 points. The photographs should be converted to high resolution scans in *.jpg or *.tiff format. Figures should be submitted as separate files.


References

A new type of literature provision has been in force since 2020 – modified vancouver style.

Please follow the instructions below.

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, title of the article (obligatory), journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: http://library.caltech.edu/reference/abbreviations/ everyone abbreviation should be end with a dot - example. Arch. Metall. Mater.] or book title; journal volume or book publisher; page spread; publication year in bracket, full DOI number).

Please note the correct layout punctation (commas and periods), and spaces.

Please note the arrangement of dots, commas and spaces.

First we write the initial of the name, dot, space, surname, volume must be written BOLD, at the name of the authors, do not write a word “and” write only a comma. We give the year of publication at the end of the sentence in brackets and DOI number (full notation and linked).

The use of DOI numbers (full notation and linked) is mandatory for each paper and should be formatted as shown in the examples below:

Samples

Journals:

[1] L.B. Magalas, Development of High-Resolution Mechanical Spectroscopy, HRMS: Status and Perspectives. HRMS Coupled with a Laser Dilatometer . Arch. Metall. Mater. 60 (3), 2069-2076 (2015). DOI: https://doi.org/10.1515/AMM-2015-0350

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Large Magnetic Field-Induced Work output in a NiMgGa Seven-Lavered Modulated Martensite. Appl. Phys. Lett. 107, 152407 (2015). DOI: https://doi.org/10.1063/1.4933303

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, Suppression of Interdiffusion in Copper/Tin thin Films. J. Mater. Eng. Perform. (2012). DOI: https://doi.org/10.1007/s11665-011-0090-2.

Books:

[4] K.U. Kainer (Ed.), Metal Matrix Composites, Wiley-VCH, Weinheim (2006).

[5] K. Szacilowski, Infochemistry: Information Processing at the Nanoscale, Wiley (2012).

[6] L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, Springer, New York (2008).

Proceedings or chapter in books with editor(s):

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major, P. Zięba (Eds.), Foundation of Materials Design 2006, Research Signpost (2006).

Internet resource:

[8] https://www.nist.gov/programs-projects/crystallographic-databases, accessed: 17.04.2017

Academic thesis (PhD, MSc):

[9] T. Mitra, PhD thesis, Modeling of Burden Distribution in the Blast Furnace, Abo Akademi University, Turku/Abo, Finland (2016).


Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "Copyright agreement", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).


License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/).

This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

This page uses 'cookies'. Learn more