Details
Title
Loss coefficients of ice slurry in sudden pipe contractionsJournal title
Archives of ThermodynamicsYearbook
2010Issue
No 3 SeptemberAuthors
Keywords
flow resistance ; Ice slurry flow ; Local loss coefficient ; Pressure losses in contractionDivisions of PAS
Nauki TechniczneCoverage
73-86Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2010Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10173-010-0015-8Source
Archives of Thermodynamics; 2010; No 3 September; 73-86References
Knodel B. (1988), Pressure drop in ice-water slurries for thermal storage application, Experimental Heat Transfer, 1, 265. ; Mika L. (2009), Experimental investigations on flow resistance of slurry ice — pressure drop in pipe reductions, Chemical Engineering, 6, 123. ; Niezgoda-Żelasko B. (2006), Momentum transfer of ice slurries flows in tubes. Modeling, International Journal of Refrigeration, 2, 429. ; Niezgoda-Żelasko B. (2006), Heat transfer and pressure drop of ice slurries flows in tubes. ; Mika L.: <i>Experimental investigations of the binary ice as cooling medium in indirect cooling systems.</i> Unpublished PhD thesis, Cracow 2004. ; Turian R. (1998), Flow of concentrated non-Newtonian slurries: Friction losses in bends, fittings, Valves and Venture meters, Int. J. Multiphase Flow, 24, 2, 243. ; IHS ESDU, <i>Flow through sudden contractions of duct area: pressure losses and flow characteristics.</i> ESDU 05024/2005. ; Fester V. (2008), Energy losses of non-Newtonian fluids in sudden pipe contractions, Chemical Engineering J, 145, 57. ; Chhabra R. (1999), Flow in the process industries. ; Szewczyk H. (2008), Correction factors in one-dimensional flow pattern of a viscous incompressible fluid in a smooth circular pipe, Chemical And Process Engineering, 29, 271. ; Strzelecka K. (2008), Coriolis coefficient in transitional and turbulent pipe flow, Environment Protection, 1, 21. ; Melinder A. (1997), Thermophysical properties of liquid secondary refrigerants. Tables and diagrams for the refrigerant industry. ; Jeżowiecka-Kabsh K. (2001), Fluid Mechanics. ; Wędrychowicz W. (2006), Dependence of the resistant coefficient on the Reynolds number during the flow of water through pipe sudden constriction, Environment Protection, 3, 51.Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China