Details

Title

Experimental and theoretical study of dryout in annular flow in small diameter channels

Journal title

Archives of Thermodynamics

Yearbook

2011

Issue

No 1 April

Authors

Keywords

Dryout ; flow boiling ; CHF ; Annular flow

Divisions of PAS

Nauki Techniczne

Coverage

89-108

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-011-0005-5

Source

Archives of Thermodynamics; 2011; No 1 April; 89-108

References

Qu W. (2003), Flow boiling heat transfer in two-phase micro channel heat sinks - II. Annular two-phase flow model, Int. J. Heat and Mass Transfer, 46, 2772. ; Kandlikar S. (2001), Critical heat flux in subcooled flow boiling - an assessment of current understanding and future directions for research, Multiphase Science and Technology, 13, 3, 207. ; Bergles A. (2003), Critical heat flux in microchannels: Experimental issues and guidelines for measurement, null, 177. ; Celata G. (2001), Critical heat flux for saturated flow boiling of water in vertical tubes, Int. J. Heat Mass Transfer, 44, 4323, doi.org/10.1016/S0017-9310(01)00072-2 ; Whalley P. (1974), The calculation of critical heat flux in forced convection boiling, null, B6.11, 290. ; Kataoka I., Ishii M.: <i>Mechanism and correlation of droplet entrainment and deposition in annular two-phase flow.</i> Nuclear Regulatory Commision NUREG/CR - 2885, ANL - 82-44, 1982. ; Ueda T. (1981), Critical heat flux and droplet entrainment rate in boiling of falling liquid films, Int. J. Heat Mass Transfer, 24, 7, 1257, doi.org/10.1016/0017-9310(81)90175-7 ; Mishima K. (1984), Flow regime transition criteria for upward two-phase flow in vertical tubes, Int. J. Heat Mass Transfer, 5, 723. ; Sedler B. (1981), A simplified model of the boiling crisis, Int. J. Heat Mass Transfer, 24, 431, doi.org/10.1016/0017-9310(81)90050-8 ; Cumo M. (1974), A burnout correlation to scale water with freon, null. ; Mikielewicz D. (2007), A model of dryout in annular flow, null. ; Okawa T. (2004), Prediction of the critical heat flux in annular regime in various vertical channels, Nucl. Engng and Design, 229, 223, doi.org/10.1016/j.nucengdes.2004.01.005 ; Klugmann M.: <i>Enhancement of heat Exchange in flow boiling in minichannels.</i> PhD thesis, Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk 2009 (in Polish). ; Tesmar J.: <i>General semi-empirical flow boiling model for conventional and small diameter channels.</i> PhD thesis, Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk 2008 (in Polish). ; Gliński M.: <i>Experimental and theoretical investigation of dryout in minichannels.</i> PhD thesis, Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk 2010 (in Polish). ; Katto Y. (1984), An improved version of the generalized correlation of critical heat flux for the forced convection boiling in uniformly heated vertical tubes, Int. J. Heat Mass Transfer, 27, 1641, doi.org/10.1016/0017-9310(84)90276-X ; Refprop 8.0, NIST, 2007. ; Wojtan L. (2006), Investigation of critical heat flux in single, uniformly heated microchannels, Experimental Thermal and Fluid Science, 30, 765, doi.org/10.1016/j.expthermflusci.2006.03.006 ; Qi S. (2007), Flow boiling of liquid nitrogen in microtubes: Part II - Heat transfer characteristics and critical heat flux, Int. J. Heat Mass Transfer, 50, 5017, doi.org/10.1016/j.ijheatmasstransfer.2007.08.017 ; Zhang W. (2006), Correlation for critical heat flux for flow boiling of water in mini-channels, Int. J. Heat Mass Transfer, 49, 1058, doi.org/10.1016/j.ijheatmasstransfer.2005.09.004 ; Revellin R. (2008), Conditions of liquid film dryout during saturated flow boiling in microchannels, Chemical Engineering Science, 63, 5795, doi.org/10.1016/j.ces.2008.08.030

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×