Details

Title

New technique of the local heat flux measurement in combustion chambers of steam boilers

Journal title

Archives of Thermodynamics

Yearbook

2011

Issue

No 3 December

Authors

Keywords

Heat flux measurement ; steam boiler ; inverse heat conduction problem ; Slagging of combustion chambers ; CFD simulation

Divisions of PAS

Nauki Techniczne

Coverage

103-116

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10173-011-0016-2

Source

Archives of Thermodynamics; 2011; No 3 December; 103-116

References

Taler D. (2010), Measurement of heat flux density and heat transfer coefficient, Archives of Thermodynammics, 31, 3, doi.org/10.2478/v10173-010-0011-z ; Sobota T. (2011), Developments in heat transfer. ; Taler J. (2011), Heat Flux: Processes, Measurement Techniques and Applications. ; Seeger M. (1983), Konstruktion und Einsatz transportabler Warmeflussonden zur Bestimmung der Heizflachenbelastung in Feuerraumen. ; Northover E. (1967), A heat flux meter for use in boiler furnaces, J Sci. Instrum, 44, 371, doi.org/10.1088/0950-7671/44/5/311 ; Neal S. (1980), The measurement of radiant heat flux in large boiler furnaces-I. Problems of ash deposition relating to heat flux, Int J Heat Mass Transfer, 23, 1015, doi.org/10.1016/0017-9310(80)90075-7 ; Arai N. (1996), A review of measurements of heat flux density applicable to the field of combustion, Exp Therm Fluid Sci, 12, 452, doi.org/10.1016/0894-1777(95)00136-0 ; Taler J. (1990), Measurement of heat flux to steam boiler membrane water walls, VGB Kraftwerkstechnik, 70, 540. ; Taler J. (1992), A method of determining local heat flux in boiler furnaces, Int. J Heat Mass Transfer, 35, 1625, doi.org/10.1016/0017-9310(92)90051-S ; Fang Z. (1997), A new method for solving the inverse conduction problem in steady heat flux measurement, Int J Heat Mass Transfer, 40, 3947, doi.org/10.1016/S0017-9310(97)00046-X ; Luan W. (2000), Suspension-to membranewall heat transfer in a circulating fluidized bed combustor, Int J. Heat Mass Transfer, 43, 1173, doi.org/10.1016/S0017-9310(99)00198-2 ; Sobota T. (2008), The measurement of radiant heat flux in combustion chambers of large steam boilers, null. ; Sobota T. (2010), A simple method for measuring heat flux in boiler furnaces, Rynek Energii, 86, 108. ; Valero A. (1996), Ash fouling in coal-fired utility boilers. Monitoring and optimization of on-load cleaning, Prog Energy Combust Sci, 22, 189, doi.org/10.1016/0360-1285(96)00004-4 ; Teruel E. (2005), Monitoring and prediction of fouling in coal-fired utility boilers using neural networks, Chem Eng Sci, 60, 5035, doi.org/10.1016/j.ces.2005.04.029 ; Taler J. (2011), Advances in mechanical engineering research, 1. ; ANSYS CFX 12. ANSYS Inc., Urbana, Illinois, USA, 2010. ; Seber G. (1989), Nonlinear Regression, doi.org/10.1002/0471725315 ; it Policy on reporting uncertainties in experimental measurements and results. Trans. ASME J Heat Transfer <b>122</b>(2000), 411-413. ; Press W. (1992), Numerical Recipes in Fortran. The Art Of Scientific Computing.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×