Szczegóły

Tytuł artykułu

Chaotic air pressure fluctuations during departure of air bubbles from two neighbouring nozzles

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2012

Numer

No 1 August

Autorzy

Słowa kluczowe

Bubble chain ; Bubble dynamics ; Chaotic dynamics

Wydział PAN

Nauki Techniczne

Zakres

127-137

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2012

Typ

Artykuły / Articles

Identyfikator

DOI: 10.2478/v10173-012-0006-z ; ISSN 1231-0956 ; eISSN 2083-6023

Źródło

Archives of Thermodynamics; 2012; No 1 August; 127-137

Referencje

Martin M. (2008), On the effect of the orifice configuration on the coalescence of growing bubbles, Chemical Engineering and Processing, 47, 9-10, 1799, doi.org/10.1016/j.cep.2007.10.002 ; Kazakis N. (2008), Coalescence during bubble formation at two neighbouring pores: An experimental study in microscopic scale, Chemical Engineering Science, 63, 21, 5160, doi.org/10.1016/j.ces.2008.07.006 ; Martín M. (2007), Bubble coalescence at sieve plates: II. Effect of coalescence on mass transfer. Superficial area versus bubble oscillations, Chemical Engineering Science, 62, 6, 1741, doi.org/10.1016/j.ces.2006.12.019 ; Cieslinski J. (2005), Gas bubble dynamics experiment and fractal analysis, Int. J. Heat and Mass Transfer, 48, 9, 1808, doi.org/10.1016/j.ijheatmasstransfer.2004.12.002 ; Femat R. (1998), Chaotic flow structure in a vertical bubble column, Physics Letters A, 248, 1, 67, doi.org/10.1016/S0375-9601(98)00506-4 ; Nguyen K. (1998), Spatio-temporal dynamics in a train of rising bubbles, The Chemical Engng J, 65, 1, 191. ; Li H. (1997), Chaotic bubble coalescence in non-Newtonian fluids, Int. J. Multiphase Flow, 23, 4, 713, doi.org/10.1016/S0301-9322(97)00004-9 ; Tritton D. (1993), Chaotic bubbling, Phys. Fluids A, 5, 2, 503, doi.org/10.1063/1.858874 ; Zhang L. (2001), Aperiodic bubble formation from submerged orifice, Chemical Engineering Science, 56, 18, 5371, doi.org/10.1016/S0009-2509(01)00241-X ; Ruzicka M. (2009), Meniscus dynamics in bubble formation. Part I: Experiment, Chemical Engineering Research and Design, 87, 10, 1349, doi.org/10.1016/j.cherd.2009.03.001 ; Ruzicka M. (2009), Meniscus dynamics in bubble formation. Part II: Model, Chemical Engineering Research and Design, 87, 10, 1357, doi.org/10.1016/j.cherd.2009.03.002 ; Vazquez A. (2008), Experimental comparison between acoustic and pressure signals from a bubbling flow, Chemical Engineering Science, 63, 24, 5860, doi.org/10.1016/j.ces.2008.08.032 ; Ruzicka M. (1997), Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows, Int. J. Multiphase Flow, 23, 4, 671, doi.org/10.1016/S0301-9322(97)00009-8 ; Mosdorf R. (2003), Chaos in bubbling - nonlinear analysis and modelling, Chemical Engineering Science, 58, 17, 3837, doi.org/10.1016/S0009-2509(03)00299-9 ; Mosdorf R. (2011), Multifractal properties of large bubble paths in a single bubble column, Archives of Thermodynamic, 32, 1, 1. ; Mosdorf R. (2010), Frequency and non-linear analysis of bubble paths in bubble chain, Acta Mechanica et Automatica, 4, 1, 72. ; Gajek L. (2000), Statistics, models and methods. ; Schuster H. (1993), Deterministic Chaos. An Introduction. ; Wolf A. (1985), Determining Lyapunov Exponent from a Time series, Physica D, 16, 3, 285, doi.org/10.1016/0167-2789(85)90011-9

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×