Details
Title
Model of heat transfer in the stagnation point of rapidly evaporating microjetJournal title
Archives of ThermodynamicsYearbook
2012Issue
No 1 AugustAuthors
Keywords
Microjet cooling ; Surface cooling ; CHFDivisions of PAS
Nauki TechniczneCoverage
139-152Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2012Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10173-012-0007-ySource
Archives of Thermodynamics; 2012; No 1 August; 139-152References
Garimella S. (1995), Confined and submerged liquid jet impingement heat-transfer, JHT, 117, 871, doi.org/10.1115/1.2836304 ; Mikielewicz D. (2009), Experimental study of heat transfer intensification using microjets, null. ; Goldstein R. (null), Visualisation of heat transfer from arrays of impinging jets, Int. J. Heat Mass Transfer, 25, 1857, doi.org/10.1016/0017-9310(82)90108-9 ; Meyer M. (2006), Single-phase and two-phase cooling with an array of rectangular jets, Int. J. Heat Mass Transfer, 49, 17, doi.org/10.1016/j.ijheatmasstransfer.2005.07.039 ; Sung M. (2008), Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module, Int. J. Heat Mass Transfer, 51, 3882, doi.org/10.1016/j.ijheatmasstransfer.2007.12.016 ; San J. (2001), Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets, Int. J. Heat Mass Transfer, 44, 3997, doi.org/10.1016/S0017-9310(01)00043-6 ; Liu Z.-H. (2002), Prediction of critical heat flux for convective boiling of saturated water jet impinging on the stagnation zone, J. Heat Transfer, 124, 1125, doi.org/10.1115/1.1518497 ; Omar A. (2009), Modeling of nucleate boiling heat transfer under an impinging free jet, Int. J. Heat Mass Transfer, 52, 5557, doi.org/10.1016/j.ijheatmasstransfer.2009.06.025 ; Plata M.: <i>Microjet cooling.</i> Doctoral seminar, Gdańsk 2007.Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China