Details

Title

The analysis of parameters of the cryogenic oxygen unit cooperating with power plant to realize oxy-fuel combustion

Journal title

Archives of Thermodynamics

Yearbook

2015

Issue

No 1 March

Authors

Keywords

coal power unit with oxyfuel combustion ; two-column cryogenic oxygen unit ; mathematical modelling of thermal systems

Divisions of PAS

Nauki Techniczne

Coverage

39-54

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2015-0003

Source

Archives of Thermodynamics; 2015; No 1 March; 39-54

References

ChorowskiM (2008), Air separation units in oxyfuel combustion the Sympozjum Technologie zeroemisyjne spalane tlenowe in Polish, Proc. ; SmithA (2001), A review of air separation technologies and their integration with energy conversion process, Fuel Process Technol, 115, doi.org/10.1016/S0378-3820(01)00131-X ; HuY (2000), CO SO emissions from the combustion of coal with high oxygen concentration gases, Fuel, 2. ; KotowiczJ (2013), Supercritical power plant MW with cryogenic oxygen plant and CCS installation Arch, Thermodyn, 600. ; ChorowskiM (2007), Fundamentals and Applications IPPU Masta in Polish, Cryogenics. ; CornelissenR (1998), Energy analysis of cryogenic air separation, Energy Convers Mgmt, 16. ; KimuraN (1995), The characteristics of pulverized coal combustion in CO mixtures for CO recovery Energ, Convers Manage, 2, 805, doi.org/10.1016/0196-8904(95)00126-X ; SaidA (2011), Process modelling of eight oxyfuel combustion configurations with Aspen Plus Conf onCarbon Reduction Technologies CaReTech, Proc Int Sept, 19.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×