Details

Title

Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

Journal title

Archives of Thermodynamics

Yearbook

2017

Issue

No 1

Authors

Keywords

CO2 ; energy ; refrigeration ; ejector ; exergy

Divisions of PAS

Nauki Techniczne

Coverage

39-62

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2017

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2017-0003

Source

Archives of Thermodynamics; 2017; No 1; 39-62

References

Lin (2013), Numerical investigation of geometry parameters for pressure recovery of an adjustable ejector in multievaporator refrigeration system, Appl Therm Eng, 61, 649. ; Chen (2013), Recent developments in ejector refrigeration technologies, Renew Sust Energ Rev, 19, 629. ; Cengel (2007), Thermodynamics : An Engineering Approach th Edn, McGraw, 6. ; Elbel (2008), Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical system operation, Int J Refrig, 31, 744. ; Lin (2012), Pressure recovery ratio in a variable cooling loads ejector - based multi - evaporator refrigeration system, Energy, 44, 649. ; Zhou (2013), Theoretical study on a novel dual - nozzle ejector enhanced refrigeration cycle for household refrigerator - freezers, Energy Convers Manag, 73, 278. ; Brunion (1997), Compression of the working domains of some compression heat pumps and a compression - absorption heat pump, Int J Refrig, 20, 308. ; Huang (1999), - D analysis of ejector performance, Int J Refrig, 22, 1. ; Liu (2002), Thermodynamic analysis on trans - critical vapor compression / ejection hybrid refrigeration cycle In Fifth IIR - GUSTAV Lorentzen Conference on Natural Working Fluids, Proc, 744. ; Groll (2007), Review article : review of recent advances toward transcritical CO cycle technology, HVAC R Res, 13, 499. ; Manjili (2012), Performance of a new two - stage multi - intercooling transcritical CO ejector refrigeration cycle, Appl Therm Eng, 40, 202. ; Chunnanond (2004), Ejectors : applications in refrigeration technology, Renew Sust Energ Rev, 8, 129. ; Liu (2013), Study of ejector efficiencies in refrigeration cycles, Appl Therm Eng, 52, 360. ; Lin (2013), Experimental investigation of the adjustable ejector in a multi - evaporator refrigeration system, Appl Therm Eng, 61, 10. ; Chen (1988), A new ejector - absorber cycle to improve the COP of an absorption refrigeration system, Applied Energy, 30, 37. ; Yang (2007), Performance investigation of transcritical carbon dioxide two - stage compression cycle with expander, Energy, 32, 237. ; Lu (2013), Performance study on compressed air refrigeration system based on single screw expander, Energy, 55, 762. ; Sharma (2014), Comparative analysis of various CO configurations in supermarket refrigeration systems, Int J Refrig, 46, 86. ; Nehdi (2007), Performance analysis of the vapor compression cycle using ejector as an expander, Int J Energ Res, 31, 364. ; Elias Bou Lawz Ksayer (2007), Étude et conception des systèmes á efficacité énergétique améliorée fonctionnant au CO comme fluide frigorigène, Chapt, 2, 2. ; Li (2005), Transcritical CO refrigeration cycle with ejector - expansion device, Int J Refrig, 28, 766. ; Elakdhar (2007), Analysis of a compression - ejection cycle for domestic refrigeration, Ind Eng Chem Res, 46, 4639. ; Radermacher (1996), Domestic refrigerators : recent developments, Int J Refrig, 19, 61. ; Shin (2014), Theoretical analysis of performance of a two - stage compression CO cycle with two different evaporating temperatures, Int J Refrig, 47, 164. ; Kairouani (2009), Use of ejectors in a multi - evaporator refrigeration system for performance enhancement, Int J Refrig, 32, 1173. ; Dudar (2013), Exergy analysis of operation of two - phase ejector in compression refrigeration systems, Arch Thermodyn, 34, 107.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×