Szczegóły

Tytuł artykułu

Optimization of process parameters during end milling and prediction of work piece temperature rise

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2017

Wolumin

vol. 64

Numer

No 3

Afiliacje

Bhirud, N.L. : Research Scholar, Bapurao Deshmukh College of Engineering, RSTMU, Nagpur and Mechanical Engineering Dept, Sandip Institute of Engineering & Management, Savitribai Phule Pune University, India. ; Gawande, R.R. : Mechanical Engineering Dept, Bapurao Deshmukh College of Engineering, RSTMU, Nagpur, India

Autorzy

Słowa kluczowe

dry end milling ; Al 6063 ; Taguchi method ; ANOVA ; regression analysis

Wydział PAN

Nauki Techniczne

Zakres

327-346

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] M.T. Hayajneh, M.S. Tahat, and J. Bluhm. A study of the effects of machining parameters on the surface roughness in the end-milling process. Jordan Journal of Mechanical and Industrial Engineering, 1(1):1–5, 2007.
[2] P.S. Sreejith and B.K.A. Ngoi. Dry machining: Machining of the future. Journal of Materials Processing Technology, 101(1–3):287–291, 2000. doi: 10.1016/S0924-0136(00)00445-3.
[3] V.P. Astakhov. Improvements of tribological conditions. In V.P. Astakhov, editor, Tribology of Metal Cutting, pages 326–390. Elsevier, 2006.
[4] A. Shokrani, V. Dhokia, and S.T. Newman. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57:83–101, June 2012. doi: 10.1016/j.ijmachtools.2012.02.002.
[5] V.P. Astakhov. Ecological machining: Near-dry machining. In J.P. Davim, editor, Machining: Fundamentals and Recent Advances, pages 195–223. Springer Verlag, London, 2008.
[6] A. Tamilarasan, K. Marimuthu, and A. Renugambal. Investigations and optimization for hard milling process parameters using hybrid method of RSM and NSGA-II. Rev. Téc. Ing. Univ. Zulia, 39(1):41–54, 2016.
[7] A. Tamilarasan, D. Rajamani, and A. Renugambal. An approach on fuzzy and regression modeling for hard milling process. Applied Mechanics & Materials, 813/814:498–504, 2015.
[8] A. Tamilarasan and D. Rajamani. Multi-objective optimization of hard milling process using evolutionary computation techniques. International Journal of Advanced Engineering Research and Applications, 1(7):264–275, 2015.
[9] A. Tamilarasan and K. Marimuthu. Multi-response optimization of hard milling process: RSM coupled with grey relational analysis. International Journal of Engineering and Technology, 5(6):4901–4913, 2014.
[10] A. Tamilarasan and K. Marimuthu. Multi-response optimisation of hard milling process parameters based on integrated Box-Behnken design with desirability function approach. International Journal of Machining and Machinability of Materials, 15(3–4):300–320, 2014.
[11] M.S. Sukumar, B.V.S. Reddy, and P. Venkataramaiah. Analysis on multi responses in face milling of AMMC using Fuzzy-Taguchi method. Journal of Minerals and Materials Characterization and Engineering, 3(4):255–270, 2015. doi: 10.4236/jmmce.2015.34028.
[12] M. Santhanakrishnan, P.S. Sivasakthivel, and R. Sudhakaran. Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(2):487–496, 2017. doi: 10.1007/s40430-015-0378-5.
[13] P. Sivasakthivel and R. Sudhakaran. Optimization of machining parameters on temperature rise in end milling of Al 6063 using response surface methodology and genetic algorithm. International Journal of Advanced Manufacturing Technology, 67(9):2313–2323, 2013. doi: 10.1007/s00170-012-4652-8.
[14] K. Kadirgama, M.M. Noor, M.M. Rahman, W.S.W. Harun, and C.H.C. Haron. Finite element analysis and statistical method to determine temperature distribution on cutting tool in endmilling. European Journal of Scientific Research, 30(3):451–463, 2009.
[15] B. Patel, H. Nayak, K. Araniya, and G. Champaneri. Parametric optimization of temperature during CNC end milling of mild steel using RSM. International Journal of Engineering Research & Technology, 3(1):69–73, 2014.
[16] K. Jayakumar, J. Mathew, and M.A. Joseph. An investigation of cutting force and tool–work interface temperature in milling of Al–SiCp metal matrix composite. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(3):362–374, 2013. doi: 10.1177/0954405412472887.
[17] R. Çakıroglu and A. Acır. Optimization of cutting parameters on drill bit temperature in drilling by Taguchi method. Measurement, 46(9):3525–3531, 2013. doi: 10.1016/j.measurement.2013.06.046.
[18] S.R. Das, R.P. Nayak, and D. Dhupal. Optimization of cutting parameters on tool wear and workpiece surface temperature in turning of AISI D2 steel. International Journal of Lean Thinking, 3(2):140–156, 2012.
[19] A.H. Suhail, N. Ismail, S.V. Wong, and N.A.A. Jalil. Optimization of cutting parameters based on surface roughness and assistance of workpiece surface temperature in turning process. American Journal of Engineering and Applied Sciences, 3(1):102–108, 2010.
[20] Elssawi Yahya, Guofu Ding, and Shengfeng Qin. Prediction of cutting force and surface roughness using Taguchi technique for aluminum alloy AA6061. Australian Journal of Mechanical Engineering, 14(3):151–160, 2016. doi: 10.1080/14484846.2015.1093220.
[21] M. Sarıkaya, V. Yılmaz, and H. Dilipak. Modeling and multi-response optimization of milling characteristics based on Taguchi and gray relational analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(6):1049–1065, 2016. doi: 10.1177/0954405414565136.
[22] Ö. Erkan, M. Demetgül, B. Isik, and I.Nur Tansel. Selection of optimal machining conditions for the composite materials by using Taguchi and GONNs. Measurement, 48:306–313, Feb. 2014. doi: 10.1016/j.measurement.2013.11.011.
[23] A. Li, J. Zhao, Z. Pei, and N. Zhu. Simulation-based solid carbide end mill design and geometry optimization. International Journal of Advanced Manufacturing Technology, 71(9–12):1889–1900, 2014. doi: 10.1007/s00170-014-5638-5 .
[24] T. Kıvak. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50:19–28, April 2014. doi: 10.1016/j.measurement.2013.12.017.
[25] K. Shi, D. Zhang, and J. Ren. Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis. The International Journal of Advanced Manufacturing Technology, 81(1-4):645–651, 2015. doi: 10.1007/s00170-015-7218-8.
[26] L.M. Maiyar, R. Ramanujam, K. Venkatesan, and J. Jerald. Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Engineering, 64:1276–1282, 2013. doi: 10.1016/j.proeng.2013.09.208.
[27] C.C. Tsao. Grey–Taguchi method to optimize the milling parameters of aluminum alloy. The International Journal of Advanced Manufacturing Technology, 40(1):41–48, 2009. doi: 10.1007/s00170-007-1314-3.
[28] M.S. Shahrom, N.M. Yahya, and A.R. Yusoff. Taguchi method approach on effect of lubrication condition on surface roughness in milling operation. Procedia Engineering, 53:594–599, 2013. doi: 10.1016/j.proeng.2013.02.076.
[29] R. Sreenivasulu. Optimization of surface roughness and delamination damage of GFRP composite material in end milling using Taguchi design method and artificial neural network. Procedia Engineering, 64:785–794, 2013. doi: 10.1016/j.proeng.2013.09.154.
[30] J.S. Pang, M.N.M. Ansari, O.S. Zaroog, M.H. Ali, and S.M. Sapuan. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep) hybrid composite. HBRC Journal, 10(2):138–144, 2014. doi: 10.1016/j.hbrcj.2013.09.007.
[31] J.Z. Zhang, J.C. Chen, and E.D. Kirby. Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of Materials Processing Technology, 184(1):233–239, 2007. doi: 10.1016/j.jmatprotec.2006.11.029.
[32] S. Vijay and V. Krishnaraj. Machining parameters optimization in end milling of Ti-6Al-4V. Procedia Engineering, 64:1079–1088, 2013. doi: 10.1016/j.proeng.2013.09.186.
[33] J.A. Ghani, I.A. Choudhury, and H.H. Hassan. Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology, 145(1):84–92, 2004. doi: 10.1016/S0924-0136(03)00865-3.
[34] S. Moshat, S. Datta, A. Bandyopadhyay, and P. Pal. Optimization of CNC end milling process parameters using PCA-based Taguchi method. International Journal of Engineering, Science and Technology, 2(1):95–102, 2010. doi: 10.4314/ijest.v2i1.59096.
[35] S. Sivarao, M. Robert, and A.R. Samsudin. Taguchi modeling and optimization of laser processing in machining of substantial industrial PVC foam. International Journal of Applied Engineering Research, 8(12):1415–1426, 2013.
[36] M.B. da Silva and J. Wallbank. Cutting temperature: prediction and measurement methods – a review. Journal of Materials Processing Technology, 88(1–3):195–202, 1999. doi: 10.1016/S0924-0136(98)00395-1.
[37] R. Komanduri and Z.B. Hou. A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribology International, 34(10):653–682, 2001. doi: 10.1016/S0301-679X(01)00068-8.
[38] N.A. Abukhshim, P.T. Mativenga, and M.A. Sheikh. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7–8):782–800, 2006. doi: 10.1016/j.ijmachtools.2005.07.024.
[39] D. O’Sullivan and M. Cotterell. Workpiece temperature measurement in machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216(1):135–139, 2002. doi: 10.1243/0954405021519645.
[40] J.M. Longbottom and J.D. Lanham. Cutting temperature measurement while machining – a review. Aircraft Engineering and Aerospace Technology, 77(2):122–130, 2005. doi: 10.1108/00022660510585956.
[41] A. Goyal, S. Dhiman, S.Kumar, and R. Sharma. Astudy of experimental temperature measuring techniques used in metal cutting. J ordan Journal of Mechanical and Industrial Engineering, 8(2):82–93, 2014.
[42] P.J.T. Conradie, G.A. Oosthuizen, N.F. Treurnicht, and A. Al Shaalane. Overview of work piece temperature measurement techniques for machining of Ti6Al4V. South African Journal of Industrial Engineering, 23(2):116–130, 2012.
[43] D.J. Richardson, M.A. Keavey, and F. Dailami. Modelling of cutting induced workpiece temperatures for dry milling. International Journal of Machine Tools and Manufacture, 46(10):1139–1145, 2006. doi: 10.1016/j.ijmachtools.2005.08.008.
[44] O. Rostam, M.F. Dimin, H.H. Luqman, M.R. Said, L.K.Keong, M.Y.Norazlina, M.Norhidayah, and A. Shaaban. Assessing the significance of rate and time pulse spraying in top spray granulation of urea fertilizer using Taguchi method. Applied Mechanics and Materials, 761:308–312, 2015.
[45] S. Sivarao, K.R. Milkey, A.R. Samsudin, A.K. Dubey, and Kidd P. Comparison between Taguchi method and response surface. Jordan Journal of Mechanical and Industrial Engineering, 8(1):35–42, 2014.

Data

2017

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/meceng-2017-0020 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; 2017; vol. 64; No 3; 327-346
×