Szczegóły

Tytuł artykułu

Microstructure Characterization of Composite from ZrO2 – Ti System

Tytuł czasopisma

Archives of Metallurgy and Materials

Rocznik

2017

Wolumin

vol. 62

Numer

No 4

Autorzy

Wydział PAN

Nauki Techniczne

Wydawca

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Commitee on Metallurgy of Polish Academy of Sciences

Data

2017

Identyfikator

DOI: 10.1515/amm-2017-0303 ; ISSN 1733-3490

Źródło

Archives of Metallurgy and Materials; 2017; vol. 62; No 4

Referencje

Kapuściński (1993), podstawy projektowania i wytwarzania, null, 1. ; Fernandes (null), Effect of yttria - titanium shell - core structured powder on strength and ageing of zirconia / titanium composites, Mater Sci Eng, 646. ; Lin (1100), Zirconia - related phases in the zirconia / titanium diffusion couple after annealing at, Am Ceram Soc, 12, 2928. ; Yoshida (1989), Properties of partially stabilized zirconia, fuel cell Electrochem Soc, 136. ; Lin (1550), Ti Phases formed in the titanium and zirconia interface after reaction at, Am Ceram Soc, 11, 1268. ; Borik (2014), Phase composition structure and mechanical properties of partially stabilized zirconia ) crystals as a function of stabilizing impurity content, Alloy Compd, 586. ; Wejrzanowski (2006), Quantitative methods for nanopowders characterization, Appl Surf Sci, 15, 253. ; Weber (1956), Observations on the stabilization of zirconia, Am Ceram Soc, 39. ; Chmielewski (2016), The influence of sintering time on the microstructural properties of chromium - rhenium matrix composites, Int J Refract Met, 14, 59. ; Tohgo (null), Fabrication of PSZ - Ti composites by spark plasma sintering and their mechanical properties Mate, Sci Eng, 621. ; Boczkowska (2003), null. ; Niinomi (1998), Mechanical properties of biomedical titanium alloys and, Materials Science Engineering, 243. ; Lin (2007), Effected of annealing temperature on microstructural development at the interface between zirconia and titanium of the, Journal American Ceramic Society, 13, 893.
×