Szczegóły Szczegóły PDF BIBTEX RIS Tytuł artykułu Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework Tytuł czasopisma Archives of Mining Sciences Rocznik 2016 Numer No 2 Autorzy Chaczykowski, Maciej Wydział PAN Nauki Techniczne Wydawca Committee of Mining PAS Data 2016 Identyfikator DOI: 10.1515/amsc-2016-0018 ; ISSN 0860-7001 Źródło Archives of Mining Sciences; 2016; No 2 Referencje Larjola (1995), Electricity from industrial waste heat using high - speed organic Rankine cycle, Int J Production Economics, 41, 227, doi.org/10.1016/0925-5273(94)00098-0 ; Saavedra (2010), Thermodynamic optimisation of organic Rankine cycles at several condensing temperatures : case study of waste heat recovery in a natural gas compressor station IMechE Part, Proc Power Energy, 224. ; Chacartegui (2009), Alternative ORC bottoming cycles for combined cycle power plants, Appl Energy, 86, 2162, doi.org/10.1016/j.apenergy.2009.02.016 ; Najjar (1988), Cogeneration by combining gas turbine engine with organic Rankine cycle Heat Recov, Syst CHP, 8, 211, doi.org/10.1016/0890-4332(88)90057-9 ; Drescher (2007), Fluid selection for the Organic Rankine Cycle in biomass power and heat plants, Appl Therm Eng, 27, 223, doi.org/10.1016/j.applthermaleng.2006.04.024 ; Howard (2011), An investigation of the performance of a hybrid turboexpander - fuel cell system for power recovery at natural gas pressure reduction stations, Applied Thermal Engineering, 31, 2165, doi.org/10.1016/j.applthermaleng.2011.04.023 ; Sun (2011), Operation optimization of an organic Rankine cycle heat recovery power plant, Appl Therm Eng, 31, 2032, doi.org/10.1016/j.applthermaleng.2011.03.012 ; Hung (2001), Waste heat recovery of organic Rankine cycle using dry fluids, Energy Convers Manage, 42, 539, doi.org/10.1016/S0196-8904(00)00081-9 ; Szargut (2009), Utilization of the cryogenic exergy of liquid natural gas for the production of electricity, Energy, 34, 827, doi.org/10.1016/j.energy.2009.02.015 ; Dai (2009), Parametric optimization and comparative study of organic Rankine cycle for low grade waste heat recovery, Energy Convers Manage, 50, 576, doi.org/10.1016/j.enconman.2008.10.018 ; Kostowski (2013), Thermoeconomic assessment of a natural gas expansion system integrated with a cogeneration unit, Appl Energy, 101, 58, doi.org/10.1016/j.apenergy.2012.04.002 ; Łaciak (2013), Thermodynamic processes involving liquefied natural gas at the LNG receiving terminals, Arch Min Sci, 58, 349. ; Nguyen (2010), Power generation from residual industrial heat, Energy Convers Manage, 51, 2220, doi.org/10.1016/j.enconman.2010.03.016 ; Wang (2009), Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry, Appl Energy, 86, 941, doi.org/10.1016/j.apenergy.2008.09.001 ; Invernizzi (2007), Bottoming micro - Rankine cycles for micro - gas turbines, Appl Therm Eng, 27, 100, doi.org/10.1016/j.applthermaleng.2006.05.003 ; Leslie (2009), Recovered Energy Generation Using an Organic Rankine Cycle System, ASHRAE Transactions, 115, 220. ; Lee (2006), Analysis of design and part load performance of micro gas turbine / organic Rankine cycle combined systems, Mech Sci Technol, 20, 1502, doi.org/10.1007/BF02915973 ; Mokhatab (2007), Compressor Station Design Criteria Gas, Pipeline, 234, 26.