Details
Title
Effect of rotation on a semiconducting medium with two-temperatures under L-S theoryJournal title
Archives of ThermodynamicsYearbook
2017Issue
No 2Authors
Keywords
normal mode analysis ; Lord-Shulman theory ; rotation ; conductive temperature ; semiconductorsDivisions of PAS
Nauki TechniczneCoverage
101-122Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesDate
2017Type
Artykuły / ArticlesIdentifier
DOI: 10.1515/aoter-2017-0012Source
Archives of Thermodynamics; 2017; No 2; 101-122References
Maxwell (1867), On the dynamical theory of gases, Philos Trans Roy Soc London, 157. ; Vernotte (1958), Les paradoxes de la theorie continue de l equation de la chaleur in, CR Acad Sci, 246. ; Abbas (2013), Two - temperature generalized thermoelasticity under ramp - type heating by finite element method, Meccanica, 48, 331. ; Othman (2007), The effect of rotation on generalized micropolar thermoelasticity for a half - space under five theories, Int J Solids Struct, 44, 2748. ; Bijarnia (2016), propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half - space with voids, Int J of Appl Mech Eng, 21, 1. ; Warren (1973), Wave propagation in the two - temperature theory of thermoelasticity, Acta Mech, 16, 1. ; Todorovic (1999), Photoacoustic frequency transmission technique : Electronic deformation mechanism in semiconductors, Appl Phys, 85, 7716. ; Gordon (1965), Long - transient effects in lasers with inserted liquid samples, Appl Phys, 36, 1. ; Hayat (2004), Flow induced by non - coaxial rotation of a porous disk executing non - torsional oscil lating and second grade fluid rotating at infinity, Appl Math Model, 28, 591. ; Othman (2005), Effect of rotation in the case of - D problems of the generalized thermoelasticity with thermal relaxation, Mech Mech Eng, 2, 115. ; Boley (1962), Transient coupled thermoelastic boundary value problems in the half - space, Mech, 29, 637. ; Hayat (2008), Hal l effects on unsteady flow due to noncoaxial ly rotating disk and a fluid at infinity, Chem Eng Commun, 195, 958. ; Biot (1956), Thermoelasticity and irreversible thermodynamics, Appl Phys, 27, 240. ; Todorovic (2003), Plasma thermal , and elastic waves in semiconductors, Rev Sci Instrum, 74, 582. ; Othman (2012), The effect of rotation on two - dimensional problem of a fiber - reinforced thermoelastic with one relaxation time, Int J Thermophysics, 33, 160. ; Kreuzer (1971), Ultralow gas concentration infrared absorption spectroscopy, Appl Phys, 42, 2934. ; Chand (1990), Transient generalized magneto - thermo - elastic waves in a rotating half space, Int J Eng Sci, 28, 547. ; Lord (1967), Generalized dynamical theory of thermo - elasticity, Mech Phys Solids, 15, 299. ; Hayat (2004), Unsteady periodic flows of a magnetohydrodynamic fluid due to non - coaxial rotations of a porous disk and fluid at infinity No, Math Comput Model, 40, 1. ; Destrade (2004), Surface waves in rotating rhombic crystal, Proc Royal Soc, 460. ; Hayat (2003), MHD unsteady flows due to non - coaxial rotations of a disk and a fluid at infinity, Acta Mech Sinica, 19, 235. ; Song (2010), Study on the generalized thermoelastic vibration of the optical ly excited semiconducting micro - cantilevers, Int J Solids Struct, 47, 15. ; Cattaneo (1958), Sur une forme de l equation de la chaleur elinant le paradoxe d une propagation instantance in, CR Acad Sci, 247. ; Othman (2015), Effect of magnetic field on generalized thermoelastic rotating medium with two temperature under five theories, Comput Theor Nanos, 12, 1677. ; Youssef (2006), Theory of two - temperature generalized thermoelasticity, IMAJ Appl Math, 71, 383. ; Song (2012), Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory, Acta Mech, 223. ; Schoenberg (1973), Elastic waves in rotating media, Appl Maths, 31, 115. ; Kaviany (null), Heat Transfer Physics, Cambridge Univ. ; Dhaliwal (1980), Generalized thermoelasticity for anisotropic media, Quart Appl Math, 33, 1. ; Hayat (2007), Unsteady magnetohydrodynamic non - Newtonian flow due to non - coaxial rotations of a disk and a fluid at infinity, Chem Eng Commun, 194, 1. ; Ellahi (2007), Couette flow of a Burgers fluid with rotation, Int J Fluid Mech Res, 34, 548. ; Youssef (2008), Two - dimensional problem of two - temperature generalized thermoelastic half - space subjected to Ramp - type heating, Comp Math Model, 19, 201.Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China