Szczegóły

Tytuł artykułu

Non-linear unsteady inverse boundary problem for heat conduction equation

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2017

Numer

No 2

Autorzy

Słowa kluczowe

inverse problem ; sensitivity of solution to inverse problem ; application of Chebyshev polynomials

Wydział PAN

Nauki Techniczne

Zakres

81-100

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Data

2017

Typ

Artykuły / Articles

Identyfikator

DOI: 10.1515/aoter-2017-0011 ; ISSN 1231-0956 ; eISSN 2083-6023

Referencje

Ciałkowski (2010), A sequential and global method of solving an inverse problem of heat conduction equation, Mech Pol, 48, 111. ; Marois (2012), What is the most suitable fixed grid solidification method for handling time - varying inverse Stefan problems in high temperature industrial furnaces Heat Mass Trans, Int J, 55, 5471. ; Frąckowiak (2010), A fitting algorithm for solving inverse problems of heat conduction Heat Mass Trans, Int J, 53, 2123. ; Han (2008), Investigation of heat transfer coefficient in two - dimensional transient inverse heat conduction problems using the hybrid inverse scheme, Int J Numer Meth Engng, 1, 107. ; Duda (2000), Numerical method for the solution of non - linear two - dimen - sional inverse heat conduction problem using unstructured meshes, Int J Numer Meth Engng, 48, 881. ; Maciąg (2009), Trefftz functions for selected direct and inverse problems of mechanics Świętokrzyska Publishers in Polish, Polit. ; Trefftz (1926), Ein Gegenstük zum Ritz schenVerfahren nd of Applied Mechanics, Proc Int Cong, 131. ; Vakili (2013), Low cost surrogate model based evolutionary optimization solvers for inverse heat conduction problem Heat Mass Trans, Int J, 56, 263. ; Mierzwiczak (2011), The determination temperature - dependent thermal conductivity as inverse steady heat conduction problem Heat Mass Trans, Int J, 4, 790. ; Mierzwiczak (2011), The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions Inverse Prob, Sci En, 19, 777. ; Joachimiak (2014), Optimal choice of integral parameter in a process of solving the inverse problem for heat equation, Arch Thermodyn, 35, 265. ; Mierzwiczak (2012), Application of the method of fundamental solu - tions with the Laplace transformation for the inverse transient heat source problem, Mech Pol, 4, 1011. ; Ciałkowski (1980), On a certain inverse problem of temperature and thermal stress fields, Acta Mechanica, 4169. ; Frąckowiak (2011), Solution of the inverse heat conduction problem described by the Poisson equation for a cooled gas - turbine blade Mass Trans, Int J Heat, 54, 1236. ; Grysa (2012), Solving nonlinear direct and inverse prob - lems of stationary heat transfer by using Trefftz functions Heat Mass Trans, Int J, 55, 7336. ; Taler (1999), Solution of inverse heat conduction problems using control volume approach Heat Mass Trans, Int J, 1123.

Rada naukowa

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

Polityka Open Access

For articles published in Archives of Thermodynamics, the authors transfer copyright to publisher.

The Archives of Thermodynamics is published in formula: Open Access Gratis.
×