Details

Title

Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2017

Volume

65

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Coverage

63-70

Date

2017

Identifier

DOI: 10.1515/bpasts-2017-0008 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2017; 65; No 1; 63-70

References

Voos (2012), Posterior cruciate ligament Anatomy biomechanics and outcomes, Sports Med, 40, 222, doi.org/10.1177/0363546511416316 ; Crespo (2015), Injuries to posterolateral corner of the knee : a comprehensive review from anatomy to surgical treatment Revista Brasileira de Ortopedia, English Edition, 50, 363. ; Alam (2014), Research on particle swarm optimization based clustering : a systematic review of literature and techniques Swarm and Evolutionary, Computation, 17, 1. ; Kawa (2014), Radiological atlas for patient specific model generation in Information Technologies in Biomedicine Advances in Intelligent Systems and, Computing, 284. ; Zarychta (2010), Anterior and posterior cruciate ligament - extraction and visualization in Information Technologies in Biomedicine Advances in Intelligent and Soft, Computing, 69. ; Escalante (2012), et al Acute leukemia classification by ensemble particle swarm model selection, Artif Intell Med, 55, 163, doi.org/10.1016/j.artmed.2012.03.005 ; Badura (2012), fuzzy liver tumor segmentation in Information Technologies in Biomedicine Lecture Notes in, Bioinformatics, 7339. ; Zyout (2015), Multi - scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography Part, Comput Med Imag Grap, 46, 95, doi.org/10.1016/j.compmedimag.2015.02.005 ; Kruse (2012), Rehabilitation after anterior cruciate ligament reconstruction, Bone Joint Surg Am, 94, 1737, doi.org/10.2106/JBJS.K.01246 ; Czuppon (2014), Variables associated with return to sport following anterior cruciate ligament reconstruction : a systematic review, Sport Med, 48, 356. ; Hensler (2012), Eck Anatomic anterior cruciate ligament reconstruction utilizing the doublebundle technique, Orthop Sport Phys, 42, 184, doi.org/10.2519/jospt.2012.3783 ; Zarychta (2016), The importance of the features of the posteriori cruciate ligament in diagnosis in Information Technologies in Medicine Advances in Intelligent Systems and, Computing, 471. ; Alcala (2014), Imaging of posterior cruciate ligament reconstruction : normal postsurgical appearance and complications, Skeletal Radiol, 43, 1659, doi.org/10.1007/s00256-014-1975-6 ; Jang (1993), ANFIS : adaptive - network - based fuzzy inference system, IEEE Syst Man Cyb, 23, 665, doi.org/10.1109/21.256541 ; Zarychta (2007), Posterior cruciate ligament - visualization in Conference on Computer Recognition Systems Advances in Intelligent and Soft, Computing, 45, 695. ; Dziak (2001), Injuries of the cruciate ligaments of the knee joint in Polish, Acta Clinica, 4, 271. ; Wright (2012), Outcome of revision anterior cruciate ligament reconstruction : a systematic review, Bone Joint Surg Am, 94, 531, doi.org/10.2106/JBJS.K.00733 ; Fisher (1936), The use of multiple measurements in taxonomic problems of, Annals Eugenics, 7, 179, doi.org/10.1111/j.1469-1809.1936.tb02137.x ; Takagi (1985), Fuzzy identification of systems and its applications to modeling and control, IEEE Syst Man Cyb, 15, 116, doi.org/10.1109/TSMC.1985.6313399 ; Wieclawek (2015), Watershed based intelligent scissors, Comput Med Imag Grap, 43, 122, doi.org/10.1016/j.compmedimag.2015.01.003 ; Arlot (2010), A survey of cross - validation procedures for model selection, Statistics Surveys, 4, 40, doi.org/10.1214/09-SS054 ; Oliveira (2009), Applying particle swarm optimization algorithm for tuning a neuro - fuzzy inference system for sensor monitoring, Prog Nucl Energ, 51, 177, doi.org/10.1016/j.pnucene.2008.03.007 ; Kennedy (1995), Particle swarm optimization in International Conference on Neural Networks, Proc IEEE, 1942. ; Zarychta (2015), Features extraction in anterior and posterior cruciate ligaments analysis Part, Comput Med Imag Grap, 46, 108, doi.org/10.1016/j.compmedimag.2015.03.001 ; Galinska (2016), Swarm intelligence approach to medical image segmentation in Information Technologies in Medicine Advances in Intelligent Systems and, Computing, 471. ; Cavanaugh (2015), Postoperative rehabilitation after posterior cruciate ligament reconstruction and combined posterior cruciate ligament reconstruction - posterior lateral corner surgery, Oper Techn Sport Med, 23, 372, doi.org/10.1053/j.otsm.2015.08.003 ; Glasgow (2014), Simplicity : the ultimate sophistication, Sport Med, 48, 345. ; Pasierbinski (2001), Biobiomechanics of the cruciate ligament in Polish, Acta Clinica, 4, 284. ; Cortes (1995), Support - vector networks, Mach Learn, 20, 273, doi.org/10.1007/BF00994018 ; Zarychta (2014), Cruciate ligaments of the knee joint in the computer analysis in Information Technologies in Biomedicine Advances in Intelligent Systems and, Computing, 283.
×