Tytuł artykułu

Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

Tytuł czasopisma

Chemical and Process Engineering




vol. 38


No 1


Słowa kluczowe

Li-ion battery ; Li4Ti5O12 ; size control ; residence time distribution ; computational fluid dynamics ; flame synthesis of electroceramics

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.1515/cpe-2017-0005 ; ISSN 2300-1925 (Chemical and Process Engineering)


Chemical and Process Engineering; 2017; vol. 38; No 1; 51-66


Wagemaker (2009), Li - ion diffusion in the equilibrium nanomorphology of spinel xTi, Phys Chem B, 4, 113, ; Waser (2014), Air entrainment during flame aerosol synthesis of nanoparticles, Aerosol Sci Technol, 48, ; Pratsinis (1998), Flame aerosol synthesis of ceramic powders, Prog Energ Combust, 24, ; Naoi (2013), New generation nanohybrid supercapacitor ", Accounts Chem Res, 46, ; Kho (2011), Dopant - free , polymorphic design of TiO nanocrystals by flame aerosol synthesis, Chem Eng Sci, 66, ; Gaberscek (2007), Is small particle size more important than carbon coating ? An example study on LiFePO cathodes, Electrochem Commun, 9, 4, ; Poullikkas (2013), A comparative overview of large - scale battery systems for electricity storage, Renew Sust Energ Rev, 27, ; Athanassiou (2006), Large - scale production of carbon - coated copper nanoparticles for sensor applications, Nanotechnology, 17, ; Vlad (2014), Hybrid supercapacitor - battery materials for fast electrochemical charge storage, Sci Rep, 4, 1, ; Teleki (2006), Sensing of organic vapors by flame - made TiO nanoparticles, Chem, 119, ; Mueller (2004), Non - agglomerated dry silica nanoparticles, Powder Technol, 140,\ ; Karhunen (2011), Transition metal - doped lithium titanium oxide nanoparticles made using flame spray pyrolysis, ISRN Nanotechnology, 2011, ; Hudak (2012), Size effects in the electrochemical alloying and cycling of electrodeposited aluminum with lithium, Electrochem Soc, 159, ; Deschanvres (1971), Synthesis and crystallographic study of new solid solution of spinelle xTi - xO less than or equal to x less than or equal to, Mater Res Bull, 1, 4, ; Teoh (2010), Flame spray pyrolysis : An enabling technology for nanoparticles design and fabrication, Nanoscale, 2, 1324, ; Ohzuku (1995), Zero - strain insertion material of Li ti for rechargeable lithium cells, Electrochem Soc, 1, 142, ; Jiang (2004), Comparison of the reactions between Ti or LiC and nonaqueous solvents or electrolytes using accelerating rate calorimetry, Electrochem Soc, 7, 151, ; Du Pasquier (2009), Nano Ti - LiMn batteries with high power capability and improved cycle - life, Power Sources, 4, 186, ; Wegner (2003), Scale - up of nanoparticle synthesis in diffusion flame reactors, Chem Eng Sci, 58, ; Groehn (2012), Fluid - particle dynamics during combustion spray aerosol synthesis of ZrO, Chem Eng J, 191, ; Johannessen (2000), Computational fluid - particle dynamics for the flame synthesis of alumina particles, Chem Eng ci, 55, ; Waser (2011), Continuous flame aerosol synthesis of carbon - coated nano - LiFePO for Li - ion batteries, Aerosol Sci, 4, 42, ; Ernst (2007), Electrochemically active flame - made nanosized spinels : LiMn Ti and LiFe, Mater Chem Phys, 4, 4, ; Armand (2008), Building better batteries, Nature, 451, ; Mueller (2003), Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem Eng Sci, 58, ; Sotiriou (2010), Non - toxic dry - coated nanosilver for plasmonic biosensors, Adv Funct Mater, 20, ; Curtet (1958), Confined jets and recirculation phenomena with cold air, Combust Flame, 2, ; Padhi (1997), Phospho - olivines as positive - electrode materials for rechargeable lithium batteries, Electrochem Soc, 144, ; Olfe (1961), Mean beam length calculations for radiation from non - transparent gases, Quant Spectrosc Ra, 1, ; Teleki (2008), In situ coating of flame - made TiO particles with nanothin SiO films, Langmuir, 24, ; Gamba (2012), Residence time distribution determination of a continuous stirred tank reactor using computational fluid dynamics and its application on the mathematical modeling of styrene polymerization, Int J Chem React Eng, 10, 1, ; Magnussen (1977), On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp Int Combust, 16, 719, ; Madler (2002), Controlled synthesis of nanostructured particles by flame spray pyrolysis, Aerosol Sci, 33, ; Krumeich (null), Thermal annealing dynamics of carbon - coated LiFePO nanoparticles studied by in - situ analysis State, Solid Chem, 2016, ; Hsiao (2008), Microstructure effect on the electrochemical property of Ti as an anode material for lithium - ion batteries, Electrochim Acta, 4, 53, ; Groehn (2014), Scale - up of nanoparticle synthesis by flame spray pyrolysis : The high - temperature particle residence time, Ind Eng Chem Res, 53, ; Birozzi (2015), von Passerini Scaling up Ti for high - power lithium - ion anodes using large flame spray pyrolysis, nano Electrochem Soc, 4, 162, ; Rudin (2011), Uniform nanoparticles by flame - assisted spray pyrolysis FASP of low cost precursors, Nanopart Res, 13, ; Streltsov (1993), Multipole analysis of the electron - density in triphylite using ray - diffraction data, Acta Crystallogr B, 4, 49, ; Strobel (2007), Flame aerosol synthesis of smart nanostructured materials, Mater Chem, 17, 4743, ; Laruelle (2002), On the origin of the extra electrochemical capacity displayed by MO / Li cells at low potential, Electrochem Soc, 149, ; Bresser (2012), The importance of going nano for high power battery materials, Power Sources, 219, ; Morrison (1997), In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO particles, Chem Mater, 9, 2702, ; Madler (2002), Flame - made ceria nanoparticles, Mater Res, 17, ; Kavan (2003), Li insertion into Ti - Charge capability vs particle size in thin - film electrodes, Electrochem Soc, 4, 150, ; Asbrink (1970), A refinement of crystal structure of copper ( oxide with a discussion of some exceptional s Acta Crystall, B Stru, 26, 8. ; Strobel (2009), Direct synthesis of maghemite , magnetite and wustite nanoparticles by flame spray pyrolysis, Adv Powder Technol, 20, ; Zheng (2012), A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li - ion battery cathodes, Electrochim Acta, 71, ; Waser (2013), Size controlled CuO nanoparticles for Li - ion batteries, Power Sources, 241,

Rada naukowa

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766