Tytuł artykułu

Numerical analysis of momentum transfer processes in a mechanically agitated air – biophase – liquid system

Tytuł czasopisma

Chemical and Process Engineering




vol. 38


No 3


Słowa kluczowe

numerical modelling ; momentum transfer ; gas – solid – liquid system ; bioreactor

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.1515/cpe-2017-0036 ; ISSN 2300-1925 (Chemical and Process Engineering)


Chemical and Process Engineering; 2017; vol. 38; No 3; 465-475


Devi (2011), Analyzing flow hydrodynamics in stirred tank with CD impeller, Int Rev Chem Eng, 3, 440. ; Gimbun (2009), Modelling of mass transfer in gas - liquid stirred tanks agitated by Rushton turbine and CD impeller scale - up study, Chem Eng Res Des, 87, ; Ranganathan (2011), Investigations on hydrodynamics and mass transfer in gas liquid stirred reactor using computational fluid dynamics, Chem Eng Sci, 66, ; Smith (1993), Impeller power demand in mechanically agitated boiling systems Part, Chem Eng Res Des, 71. ; Singh (2011), An assessment of different turbulence models for predicting flow in a baffled tank stirred with a turbine, Chem Eng Sci, 66, ; Devi (2013), Comparison of flow patterns of dual CD impellers, Theor Found Chem Eng, 47, 344, ; Karcz (1997), An effect of stirred tank geometry on heat transfer efficiency Studies for concave disc turbine th European Conference on Mixing Recent Progres en Genie des Procedes, null, 11. ; Laudner (1974), The numerical computation of turbulent flows, Comput Methods Appl Mech Eng, 269, ; Zhengming (1991), Study on gas - liquid mass transfer characteristics in an agitated vessel Part II The effects of geometric parameters of an agitated tank on the volumetric mass transfer coefficient th European Conference on Mixing Part II, null, 18. ; Scargiali (2007), Modelling and simulation of gas - liquid hydrodynamics in mechanically stirred tanks, Chem Eng Res Des, 85, ; Musiał (2014), Use of CFD metod for analysis of hydrodynamics in a baffled agitated vessel with CD impeller in Polish, Chem, 1599. ; Godlewska (null), Major Experimental analysis of an effect of the nutrient type and its concentration on the rheological properties of the baker s yeast suspensions Polish, Chem Technol, 17, 2015, ; Musiał (null), Gas hold - up for gas - liquid - biophase systems in the bioreactor with CD impeller i in Polish, Chem, 54, 2015. ; Bielka (2014), Local heat transfer process for a gas - liquid system in a wall region of an agitated vessel equipped with the system of CD impellers, Ind Eng Chem Res, 53, 42, ; Karcz (1994), Experimental studies of the influence of the blade curvature of a disc turbine on power consumption, Chem Proc, 15, 371. ; Khapre (2014), Numerical comparison of Rushton turbine and CD impeller in non - Newtonian fluid stirred tank International Scholarly Scientific Research Innovation Available at : scholar waset org, null, 8. ; Rielly (1992), Effect vessel scale - up on the hydrodynamics of a self - aerating concave blade impeller, Chem Eng Sci, 47, 13, ; Sensel (1993), Gas dispersion at high aeration rates in low to moderately viscous Newtonian liquids Process Mixing Part II, Chem AIChE Symp, 89. ; Cudak (2014), Hydrodynamic characteristics of mechanically agitated air aqueous sucrose solutions, Chem Process Eng, 35, 97, ; Chung (2002), Computational Fluid Dynamics Univ. ; Cudak (2011), Process characteristics for the mechanically agitated gas - liquid systems in the turbulent fluid flow in Polish, Chem, 1000. ; Frijlink (1987), in begaste Suspensions i Prozesstechnologie, null, 9. ; Junker (2000), Retrofit of CD impeller in fermentation vessels, Appl Biochem Biotechnol, 89, ; Van (1976), Riet consumption impeller coalescence and recirculation in aerated vessels, Power Trans Inst Chem Eng, 124. ; Bakker (2000), The Available at org cfm, Online. ; Warmoeskerken (1989), The hollow blade agitator for dispersion and mass transfer, Chem Eng Res Des, 67.

Rada naukowa

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766