Genetic Polymorphism of Fusarium Culmorum Isolates Originating from Roots and Stem Bases of Barley

Journal title

Journal of Plant Protection Research




vol. 48


No 3


Divisions of PAS

Nauki Biologiczne i Rolnicze


Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute




DOI: 10.2478/v10045-008-0039-0 ; ISSN 1427-4345 ; eISSN 1899-007X


Journal of Plant Protection Research; 2008; vol. 48; No 3


Assigbetse K. (1994), Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis, Phytopathology, 84, 622. ; Baturo A. (2007), Effect of organic system on spring barley stem base health in comparison with integrated and conventional farming, J. Plant Protection Res, 2, 167. ; Bottalico A. (2002), Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe, Eur. J. Plant Pathol, 108, 611. ; Brennan J. (2005), Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum, Plant Pathol, 54, 156. ; Chandler E. (2003), Development of PCR assays to Tri7 and Tri13 trichotecene biosynthetic genes, and characterisation of chemotypes od Fusarium graminearum and Fusarium cerealis, Physiol. Mol. Plant Pathol, 62, 355. ; Chełkowski J. (1999), Identification of toxygenic Fusarium species using PCR assays, J. Phytopathol, 147, 307. ; Edwards S. (2002), PCR-based detection and quantification of mycotoxigenic fungi, Mycol. Res, 9, 1005. ; Irzykowska L. (2006), Markery molekularne w diagnostyce chorób podstawy źdźbła i korzeni zbóż. (Molecular markers in diagnostics of cereal foot and root diseases), Post. Nauk Rol, 6, 31. ; Irzykowska L. (2007), Molecular detection and comparison of Gaeumannomyces graminis var. tritici isolates originating from wheat and rye, J. Plant Protection Res, 3, 299. ; Irzykowska L. (2005a), Association of Phytophthora citricola with leather rot disease of strawberry, J. Phytopathol, 11, 680. ; Irzykowska L. (2005b), Use of molecular and conventional techniques to identify and analyze genetic variability of Rhizoctonia spp. isolates, Acta Agrobot, 2, 19. ; Jurado M. (2005), PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poe, Fusarium equiseti and Fusarium sporotrichoides, Syst. Appl. Microbiol, 28, 562. ; Kerényi Z. (2004), Mating type sequences in asexually reproducing Fusarium species, Appl. Environ. Microb, 8, 4419. ; Khalil M. (2003), Genetic affinities of Fusarium spp. and their correlation with origin and pathogenicity, Afr. J. Biotech, 2, 109. ; Kulik T. (2004), Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichoides, FEMS Microbiol. Lett, 239, 181. ; Kwaśna H. (1991), Flora Polska. Vol. 22. Grzyby (<i>Mycota</i>), 136. ; Leslie J. (2006), The <i>Fusarium</i> Laboratory Manual, 158. ; Logrieco A. (2003), Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops, Europ. J. Plant Pathol, 109, 645. ; McDonald B. (1994), Genetic variability in nuclear DNA in field populations of Stagonospora nodorum, Phytopathology, 84, 250. ; Möller E. (1999), Species-specific PCR assays for the fungal pathogens Fusarium moniliforme and Fusarium subglutinans and their application to diagnose maize ear rot disease, J. Phytopathol, 147, 497. ; Nei M. (1979), Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Nat. Acad. Sci. USA, 76, 5269. ; Nicholson P. (2004), Mycotoxins in Food: Detection and Control, 111, ; Nicholson P. (1998), Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol, Mol. Plant Pathol, 53, 17. ; Nicolaisen M. (2005), An oligonucleotide miccroarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain, J. Microbiol. Meth, 62, 57. ; Ouellet T. (1993), Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification, Phytopathology, 9, 1003. ; Sun G. (2003), RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor, Appl. Genet, 106, 1059, ; Y. Van de Peer (1994), TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Applic. Biosci, 10, 569. ; Weber Z. (2005), Analysis of mycelial growth rates and RAPD-PCR profiles in a population of Gaeumannomyces graminis var. tritici originating from wheat plants grown from fungicide-treated seed, J. Phytopathol, 153, 318. ; Williams J. (1990), DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res, 18, 6531. ; Amoah B. (1995), Variation in the Fusarium section Liseola: pathogenicity and genetic studies of isolates of Fusarium moniliforme Sheldon from different hosts in Ghana, Plant Pathol, 44, 563. ; Peltonen S. (1996), Genetic variation in Drechslera teres populations as indicated by RAPD markers, Ann. Appl. Biol, 128, 465. ; Schilling A. (1996), Polymerase chain reaction-based assays for speciesspecific detection of Fusarium culmorum, F. graminearum and F. avenaceum, Phytopathology, 5, 515.