Tytuł artykułu

Pyrolysis of waste tyres – The effect of reaction kinetics on the results of thermogravimetric analysis

Tytuł czasopisma

Chemical and Process Engineering




vol. 38


No 3


Słowa kluczowe

TGA ; pyrolysis ; end-of-life tyres ; kinetics ; TCSM

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.1515/cpe-2017-0028 ; ISSN 0208-6425


Chemical and Process Engineering; 2017; vol. 38; No 3; 363-377


Kim (1995), Pyrolysis kinetics of scrap tire rubbers Using, Environ Eng, 121, ; Mui (2010), Compensation effect during the pyrolysis of tyres and bamboo, Waste Manage, 30, 821, ; Council (1991), Directive of Amending Directive on Waste of European Communities Commission, European, 18, 156. ; Quek (2009), An algorithm for the kinetics of tire pyrolysis under different heating rates, Hazard Mater, 166, ; Galvagno (2007), Thermal and kinetic study of tyre waste pyrolysis via TG - FTIR - MS analysis, Therm Anal Calorim, 88, ; Chen (2001), On the pyrolysis kinetics of scrap automotive tires, Hazard Mater, 84, 43, ; González (2001), Pyrolysis of automobile tyre waste Influence of operating variables and kinetics study Pyrolysis, Anal Appl, 58, ; ETRMA (null), s End of life Tyres Management report Available at http www etrma org tyres ELTs, null, 2015. ; Haniu (2009), Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh, Islam Waste Manage, 29, ; Council (1999), Directive EC of on the Landfill of Waste Office for Official Publications of the European Communities Luxembourg, null, 31. ; Seidelt (2006), Description of tire pyrolysis by thermal degradation behaviour of main components Pyrolysis, Anal Appl, 1, ; Klinar (2013), Pyrolysis of natural butadiene styrene - butadiene rubber and tyre components : Modelling kinetics and transport phenomena at different heating rates and formulations, Chem Eng Sci, 87, ; Salem (2009), Kinetics and product distribution of end of life tires pyrolysis a novel approach in polyisoprene and SBR thermal cracking, Hazard Mater, 172, ; Leung (1999), Kinetic modeling of scrap tire pyrolysis, Energy Fuels, 13, ; Rudniak (2017), Modelling and experimental investigation of waste tyre pyrolysis process in a laboratory reactor, Chem Process Eng, 445, ; Mui (2008), Kinetic modeling of waste tire carbonization, Energy Fuels, 22, 1650, ; Quek (2012), modeling of rubber tire pyrolysis Pyrolysis, Mathematical Anal Appl, 95, ; Williams (2013), Pyrolysis of waste tyres, review Waste Manage, 33,

Rada naukowa

Editorial Board

Ali Mesbach, UC Berkeley, USA

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland

Anna Trusek, Wrocław University of Science and Technology, Poland

Bettina Muster-Slawitsch, AAE Intec, Austria

Daria Camilla Boffito, Polytechnique Montreal, Canada

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland

Dorota Antos, Rzeszów University of Technology, Poland

Evgeny Rebrov, University of Warwick, UK

Georgios Stefanidis, National Technical University of Athens, Greece

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland

Johan Tinge, Fibrant B.V., The Netherlands

Katarzyna Bizon, Cracow University of Technology, Poland

Katarzyna Szymańska, Silesian University of Technology, Poland

Marcin Bizukojć, Łódź University of Technology, Poland

Marek Ochowiak, Poznań University of Technology, Poland

Mirko Skiborowski, Hamburg University of Technology, Germany

Nikola Nikacevic, University of Belgrade, Serbia

Rafał Rakoczy, West Pomeranian University of Technology, Poland

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong

Tom van Gerven, KU Leuven, Belgium

Tomasz Sosnowski, Warsaw University of Technology, Poland