Details
Title
An enhanced XFEM for the discontinuous Poisson problemJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 1Authors
Affiliation
Stąpór, Paweł : Faculty of Management and Computer Modelling, Kielce University of Technology, Kielce, Poland.Keywords
discontinuity ; XFEM ; recovery procedure ; Poisson equationDivisions of PAS
Nauki TechniczneCoverage
25-37Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] P. Stąpór. An improved XFEM for the Poisson equation with discontinuous coefficients. Archive of Mechanical Engineering, 64(1):123–144, 2017. doi: 10.1515/meceng-2017-0008.[2] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83(4-5):235–265, 2005. doi: 10.1016/j.compstruc.2004.08.011.
[3] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88, 1997. doi: 10.1016/S0045-7825(96)01107-3.
[4] P.J. Payen and K.-J. Bathe. A stress improvement procedure. Computers & Structures, 112-113:311–326, 2012. doi: 10.1016/j.compstruc.2012.07.006.
[5] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. doi: 10.1002/(SICI)1097-0207(19990620)45:5601::AID-NME598>3.0.CO;2-S.
[6] P. Stąpór. Application of XFEM with shifted-basis approximation to computation of stress intensity factors. The Archive of Mechanical Engineering, 58(4):447–483, 2011. doi: 10.2478/v10180-011-0028-0.
[7] D. Belsley, R.E.Welsch, and E.Kuh. The Condition Number. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc., Hoboken, New Jersey, 1980.
[8] S. Hou and X.-D. Liu. A numerical method for solving variable coeffiecient elliptic equation with interfaces. Jurnal of Computational Physics, 202(2):411–445, 2005. doi: 10.1016/j.jcp.2004.07.016.