Details
Title
Calibration and verification of an original module measuring turbojet engine blades geometric parametersJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 1Authors
Affiliation
Szybicki, Dariusz : Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland. ; Burghardt, Andrzej : Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland. ; Kurc, Krzysztof : Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland. ; Pietruś, Paulina : Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland.Keywords
industrial robots ; blade measurement ; robotic machiningDivisions of PAS
Nauki TechniczneCoverage
97-109Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Robot-operated quality control station based on the UTT method. Open Engineering, 7(1):37–42, 2017. doi: 10.1515/eng-2017-0008.[2] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):345–348, 2017. doi: 10.17559/TV-20160820141242.
[3] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Software for the robotoperated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):349–353, 2017. doi: 10.17559/TV-20160820142224.
[4] A. Burghardt, D. Szybicki, K. Kurc, M. Muszyńska, and J. Mucha. Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength of Materials, 49(4):594–604, 2017. doi: 10.1007/s11223-017-9903-3.
[5] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology Research Journal, 11(1):232–236, 2017. doi: 10.12913/22998624/68466.
[6] P. Gierlak and M. Szuster. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robotics and Autonomous Systems, 95:80–101, 2017. doi: 10.1016/j.robot.2017.05.015.
[7] P. Gierlak, A. Burghardt, D. Szybicki, M. Szuster, and M. Muszyńska. On-line manipulator tool condition monitoring based on vibration analysis. Mechanical Systems and Signal Processing, 89:14–26, 2017. doi: 10.1016/j.ymssp.2016.08.002.
[8] Z. Hendzel, A. Burghardt, P. Gierlak, and M. Szuster. Conventional and fuzzy force control in robotised machining. Solid State Phenomena, 210:178–185, 2014. doi: 10.4028/www.scientific.net/SSP.210.178.
[9] O. Yilmaz, N. Gindy, and J. Gao. A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2):190–201, 2010. doi: 10.1016/j.rcim.2009.07.001.
[10] P. Zhao andY. Shi. Posture adaptive control of the flexible grinding head for blisk manufacturing. The International Journal of Advanced Manufacturing Technology, 70(9–12):1989–2001, 2014. doi: 10.1007/s00170-013-5438-3.
[11] P. Zhsao and Y.C. Shi. Composite adaptive control of belt polishing force for aeroengine blade. Chinese Journal of Mechanical Engineering, 26(5):988–996, 2013. doi: 10.3901/CJME.2013.05.988.
[12] X. Xu, D. Zhu, H. Zhang, S. Yan, and H. Ding. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. The International Journal of Advanced Manufacturing Technology, 90(1–4):635–647, 2017. doi: 10.1007/s00170-016-9331-8.
[13] W.L. Li., H. Xie, G. Zhang, S.J. Yan, and Z.P. Yin. Hand–eye calibration in visually-guided robot grinding. IEEE Transactions on Cybernetics, 46(11):2634–2642, 2016. doi: 10.1109/TCYB.2015.2483740.
[14] B. Sun and B. Li. Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sensors Journal, 16(5):1377–1384, 2016. doi: doi.org/10.1109/TMECH.2016.2574813">10.1109/TMECH.2016.2574813.
[16] Y. Zhang, Z.T. Chen, and T. Ning. Efficient measurement of aero-engine blade considering uncertainties in adaptive machining. The International Journal of Advanced Manufacturing Technology, 86(1–4):387–396, 2016. doi: 10.1007/s00170-015-8155-2.
[17] L. Qi, Z. Gan, C. Yun, and Q. Tang. A novel method for Aero engine blade removed-material measurement based on the robotic 3D scanning system. In Proceedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, volume 4, pages 72–75, Changchun, China, 24–26 August, 2010. doi: 10.1109/CMCE.2010.5610214.
[18] J. Godzimirski. New technologies of aviation turbine engines. Transactions of the Institute of Aviation, 213:22–36, 2011 (in Polish).
[19] G. Budzik. Geometric Accuracy of Aircraft Engine Turbine Blades. Publishing House of Rzeszow University of Technology, 2013 (in Polish).