Details
Title
Distributed sensor placement optimization for computer aided structural health monitoringJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 1Authors
Affiliation
Ameduri, Salvatore : Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy. ; Ciminello, Monica : Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy. ; Dimino, Ignazio : Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy. ; Concilio, Antonio : Centro Italiano Ricerche Aerospaziali, CIRA, Capua, Italy. ; Catignani, Alfonso : Universitá degli Studi di Napoli ‘Federico II’, Napoli, Italy. ; Mancinelli, Raimondo : Universitá degli Studi di Napoli ‘Federico II’, Napoli, Italy.Keywords
SHM ; fiber optic ; genetic optimization ; strain energyDivisions of PAS
Nauki TechniczneCoverage
111-127Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] C. Boller, F.K. Chang, and Y. Fujino. Encyclopedia of Structural Health Monitoring. John Wiley & Sons Ltd., Chichester, UK, 2009.[2] M.I. Friswell. Damage identification using inverse methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):393–410, 2007. doi: 10.1098/rsta.2006.1930.
[3] S. Zhou, Y. Bao, and H. Li. Optimal sensor placement based on substructure sensitivity. In Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, volume 8345, 2012. doi: 10.1117/12.915074.
[4] D.C. Kammer and M.L. Tinker. Optimal placement of triaxial accelerometers for modal vibration tests. Mechanical Systems and Signal Processing, 18(1):29–41, 2004. doi: 10.1016/S0888-3270(03)00017-7.
[5] M. Najeeb and V. Gupta. Energy efficient sensor placement for monitoring structural health. International Electronic Conference on Sensors and Applications, 1–16 June 2014. doi: 10.3390/ecsa-1-d008.
[6] W. Liu, W.C. Gao, Y. Sun, and M.J. Xu. Optimal sensor placement for spatial lattice structure based on genetic algorithms. Journal of Sound and Vibration, 317(1–2):175–189, 2008. doi: 10.1016/j.jsv.2008.03.026.
[7] H. Gao and J.L. Rose. Sensor placement optimization in structural health monitoring using genetic and evolutionary algorithms. Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, volume 6174, 2006. doi: 10.1117/12.657889.
[8] X. Bao and L. Chen. Recent progress in Brillouin scattering based fiber sensors. Sensors, 11(4):4152–4187, 2011. doi: 10.3390/s110404152.
[9] L. Maurin, P. Ferdinand, F. Nony, and S. Villalonga. OFDR distributed strain measurements for SHM of hydrostatic stressed structures: an application to high pressure hydrogen storage type IV composite vessels – H2E Project. 7th European Workshop on Structural Health Monitoring, pages 930–937, Nantes, France, 8–11 July, 2014.
[10] O. Shapira, U. Ben-Simon, A. Bergman, S. Shoham, B. Glam, I. Kressel, T. Yehoshula, and M. Tur. Structural health monitoring of a UAV fleet using fiber optic distributed strain sensing. International Workshop on Structural Health Monitoring, Stanford, CA, USA, 1–3 September, 2015. doi: 10.12783/SHM2015/371.
[11] J. Li, R.K. Kapania, andW. B. Spillman. Placement optimization of distributed-sensing fiber optic sensors using genetic algorithms, AIAA Journal, 46(4):824–836, 2008. doi: 10.2514/1.25090.
[12] H. Li, H. Yang, and S.-L.J, Hu. Modal strain energy decomposition method for damage localization in 3D frame structures. Journal of Engineering Mechanics, 132(9):41–951, 2006. doi: 10.1061/(ASCE)0733-9399(2006)132:9(941).
[13] H.-W. Hu and C.-B. Wu. Non-destructive damage detection of two dimensional plate structures using modal strain energy method. Journal of Mechanics, 24(4):319–332, 2008. doi: 10.1017/S1727719100002458.
[14] Z.Y. Shi, S.S. Law, and L.M. Zhang. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics, 128(5):521–529, 2002. doi: 10.1061/(ASCE)0733-9399(2002)128:5(521).
[15] M. Ciminello, A. Concilio, B. Galasso, and F.M. Pisano. Skin-stringer debonding detection using distributed dispersion index features. Structural Health Monitoring, 17(5):1245–1254, 2018. doi: 10.1177/1475921718758980.
[16] P.O. Mensah-Bonsu. Computer-aided Engineering Tools for Structural Health Monitoring under Operational Conditions. Master’s Thesis, University of Connecticut, USA, 2012. https://digitalcommons.uconn.edu/gs_theses/278.
[17] R. Mason, L.A. Ginter, M. Singleton, V.F. Hock, R.G Lampo, and S.C. Sweeney. A novel integrated monitoring system for structural health management of military infrastructure, Proceedings of Department of Defense Corrosion Conference, 2009.
[18] S. Beskhyroun. Graphical interface toolbox for modal analysis. Proceedings of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society, Auckland New Zealand, 14–16 April 2011.