Details
Title
CAD models clustering with machine learningJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 2Authors
Affiliation
Machalica, Dawid : Warsaw Institute of Aviation, Warsaw, Poland. ; Matyjewski, Marek : Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland.Keywords
3D shape matching ; 3D shape retrieval ; 3D model recognition ; 3D shape ; content-based retrieval ; machine learningDivisions of PAS
Nauki TechniczneCoverage
133-152Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search engine for 3D models. ACM Transactions on Graphics (TOG), 22(1):83–105, 2003. doi: 10.1145/588272.588279.[2] Y. Yang, H. Lin, and Y. Zhang. Content-based 3-D model retrieval: A survey. IEEE Transactions on Systems. Man and Cybernetics Part C: Applications and Reviews, 37(6), 1081–1098, 2007. doi: 10.1109/TSMCC.2007.905756.
[3] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. Three-dimensional shape searching: State-of-the-art review and future trends. Computer-Aided Design, 37(5):509–530, 2005. doi: 10.1016/j.cad.2004.07.002.
[4] Z. Zhang, Z. Jiang, and X. Wang. Biased support vector machine active learning for 3D model retrieval. In: 2010 International Conference on Mechanic Automation and Control Engineering, pages 89–92, Wuhan, China, 26–28 June, 2010. doi: 10.1109/MACE.2010.5535431.
[5] H. Cheng, C. Chu, E.Wang, and Y. Kim. 3D part similarity comparison based on levels of detail in negative feature decomposition using artificial neural network. Computer-Aided Design & Applications, 4(5):619–628, 2007. doi: 10.1080/16864360.2007.10738496.
[6] B. Bustos, D.A. Keim, D. Saupe, T. Schreck, and D.V. Vranic. Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4):345–387, 2005. doi: 10.1145/1118890.1118893.
[7] J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: J.S. Gero, F. Sudweeks, editors, Artificial Intelligence in Design ’96, pages 151–170, Springer, Dordrecht, 1996. doi: 10.1007/978-94-009-0279-4.
[8] V.B. Sunil and S.S. Pande. Automatic recognition of machining features using artificial neural networks. The International Journal of Advanced Manufacturing Technology, 41(9–10):932–947, 2009. doi: 10.1007/s00170-008-1536-z.
[9] A.C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide For Data Scientists. O’Reilly Media Inc., 2016.
[10] Z. Qin, J. Jia, and J. Qin. Content based 3D model retrieval: A survey. In: 2008 International Workshop on Content-Based Multimedia Indexing, pages 249–256, London, UK, 18–20 June, 2008. doi: 10.1109/CBMI.2008.4564954.
[11] H.J.Rea, J.R. Corney, D.E.R. Clark, J. Pritchard, M.L. Breaks, and R.A. MacLeod. Part-sourcing in a global market. Concurrent Engineering, 10(4):325–333, 2002. doi: 10.1177/a032004.
[12] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks and R. MacLeod. Coarse filters for shape matching. IEEE Computer Graphics and Applications, 22(3):65–74, 2002. doi: 10.1109/MCG.2002.999789.
[13] P. Cicconi, R. Raffaeli, and M. Germani. An approach to support model based definition by PMI annotations. Computer-Aided Design and Applications, 14(4):526–534, 2016. doi: 10.1080/16864360.2016.1257194.
[14] G. Cybenko, A. Bhasin, and K.D. Cohen. Pattern recognition of 3D CAD objects: towards an electronic yellow pages of mechanical parts. International Journal of Smart Engineering Systems Design, 1(1):1–13, 1997.
[15] Z. Li, X. Zhou, and W. Liu. A geometric reasoning approach to hierarchical representation for B-rep model retrieval. Computer-Aided Design, 62:190–202, 2015. doi: 10.1016/j.cad.2014.05.008.
[16] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of Eurographics Symposium on Geometry Processing, pages 156–164, 2003.
[17] M. El-Mehalawi and R.A. Miller. A database system of mechanical components based on geometric and topological similarity. Part I: representation. Computer-Aided Design, 35(1):83–94, 2003. doi: 10.1016/S0010-4485(01)00177-4.
[18] M. El-Mehalawi and R.A. Miller. A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching, and similarity assessment. Computer-Aided Design, 35(1):95–105, 2003. doi: 10.1016/S0010-4485(01)00178-6.
[19] C.F. You and Y.L. Tsai. 3D solid model retrieval for engineering reuse based on local feature correspondence. The International Journal of Advanced Manufacturing Technology, 46(5–8):649–661, 2010. doi: 10.1007/s00170-009-2113-9.
[20] H. Kaparthi and N.C. Suresh. A neural network system for shape-based classification and coding of rotational parts. International Journal of Production Research, 29(9):1771–1784, 1991. doi: 10.1080/00207549108948048.
[21] J. Shih, C. Lee, and J.T. Wang. A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognition, 40(1):283–295, 2007. doi: 10.1016/j.patcog.2006.04.034.
[22] Y. Gao, M. Wang, Z.J. Zha, Q. Tian, Q. Dai, and N. Zhang. Less is more: efficient 3-D object retrieval with query view selection. IEEE Transactions on Multimedia, 13(5):1007–1018, 2011. doi: 10.1109/TMM.2011.2160619.
[23] Z. Zhu, C. Rao, S. Bai, and L.J. Latecki. Training convolutional neural network from multidomain contour images for 3D shape retrieval. Pattern Recognition Letters, 119:41–48, 2019. doi: 10.1016/j.patrec.2017.08.028.
[24] Scikit-learn, documentation.
[25] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: F.F. Soulie and Jeanny Herault, editors, Neurocomputing: Algorithms, Architectures and Applications, pages 41–50, Springer-Verlag, 1990.
[26] Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends®in Machine Learning, 2(1):1–127, 2009. doi: 10.1561/2200000006.
[27] J. Patterson and A. Gibson. Deep Learning. A Practitioner’s Approach. O’Reilly Media Inc., 2017.
[28] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[29] D.P. Kingma and J.Ba. Adam: a method for stochastic optimization. In: Proceedings of 3rd International Conference for Learning Representations, San Diego, 7–9 May, 2015.