Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe

Journal title

Archive of Mechanical Engineering




vol. 66


No 2


C S, Meera : Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun (UK), India. ; Gupta, Mukul Kumar : Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun (UK), India. ; Mohan, Santhakumar : Discipline of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad (Kerala), India.



disturbance observer ; robotic backhoe ; autonomous excavation ; hybrid control

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] R.C. Winck, M. Elton, and W.J. Book. A practical interface for coordinated position control of an excavator arm. Automation in Construction, 51:46–58, 2015. doi: 10.1016/j.autcon.2014.12.012.
[2] D. Wang, L. Zheng, H. Yu, W. Zhou, and L. Shao. Robotic excavator motion control using a nonlinear proportional-integral controller and cross-coupled pre-compensation. Automation in Construction, 64:1-6, 2016. doi: 10.1016/j.autcon.2015.12.024.
[3] H. Feng, C. Yin, W. Weng, W. Ma, J. Zhou, W. Jia, and Z. Zhang. Robotic excavator trajectory control using an improvedGAbased PID controller. Mechanical Systems and Signal Processing, 105:153–168, 2018. doi: 10.1016/j.ymssp.2017.12.014.
[4] P. Saeedi, P.D. Lawrence, D.G. Lowe, P. Jacobsen, D. Kusalovic, K. Ardron, and P.H. Sorensen. An autonomous excavator with vision-based track-slippage control. IEEE Transactions on Control Systems Technology, 13(1):67–84, 2005. doi: 10.1109/TCST.2004.838551.
[5] D. Kim, J. Kim, K. Lee, C. Park, J. Song, and D. Kang. Excavator tele-operation system using a human arm. Automation in Construction, 18(2):173–182, 2009. doi: 10.1016/j.autcon.2008.07.002.
[6] J. Yoon and A. Manurung. Development of an intuitive user interface for a hydraulic backhoe. Automation in Construction, 19(6):779–790, 2010. doi: 10.1016/j.autcon.2010.04.002.
[7] S. Dadhich, U. Bodin, and U. Andersson. Key challenges in automation of earth-moving machines. Automation in Construction, 68:212–222, 2016. doi: 10.1016/j.autcon.2016.05.009.
[8] Y. Liu, M.S. Hasan, and H.-N. Yu. Modelling and remote control of an excavator. International Journal of Automation and Computing, 7(3):349–358, 2010. doi: 10.1007/s11633-010-0514-8.
[9] S. Kim, J. Park, S. Kang, P.Y. Kim, and H.J. Kim.Arobust control approach for hydraulic excavators using μ-synthesis. International Journal of Control, Automation and Systems, 16(4):1615–1628, 2018. doi: 10.1007/s12555-017-0071-9.
[10] Q.H. Nguyen, Q.P. Ha, D.C. Rye, and H.F. Durrant-Whyte. Force/position tracking for electrohydraulic systems of a robotic excavator. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 5, pages 5224–5229, Sydney, Australia, 12-15 Dec. 2000. doi: 10.1109/CDC.2001.914787.
[11] Q. P. Ha, Q.H. Nguyen, D.C. Rye, and H.F. Durrant-Whyte. Impedance control of a hydraulically actuated robotic excavator. Automation in Construction, 9(5-6):421–435, 2000. doi: 10.1016/S0926-5805(00)00056-X.
[12] Q. Ha, M. Santos, Q. Nguyen, D. Rye, and H. Durrant-Whyte. Robotic excavation in construction automation. IEEE Robotics & Automation Magazine, 9(1):20–28, 2002. doi: 10.1109/100.993151.
[13] S.E. Salcudean, S. Tafazoli, P.D. Lawrence, and I. Chau. Impedance control of a teleoperated mini excavator. In 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR’97, pages 19–25, Monterey, USA, 7-9 July 1997. doi: 10.1109/ICAR.1997.620156.
[14] S. Tafazoli, S.E. Salcudean, K. Hashtrudi-Zaad, and P.D. Lawrence. Impedance control of a teleoperated excavator. IEEE Transactions on Control System Technology, 10(3):355–367, 2002. doi: 10.1109/87.998021.
[15] M.D. Elton and W.J. Book. Comparison of human-machine interfaces designed for novices teleoperating multi-DOF hydraulic manipulators. In 2 011 RO-MAN Symposium, pages 395–400, Atlanta, USA, 31 July – 3 Aug. 2011. doi: 10.1109/ROMAN.2011.6005250.
[16] M.E. Kontz. Haptic Control of Hydraulic Machinery Using Proportional Valves. Ph.D Thesis, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA, 2007.
[17] B. Frank, L. Skogh, R. Filla, A. Fröberg, and M. Alaküla. On increasing fuel efficiency by operator assistant systems in a wheel loader. In Proceedings of International Conference on Advanced Vehicle Technologies and Integration, pages 155–161, Changchun, China, 2012. doi: 10.13140/RG.2.1.3129.1362.
[18] H. Cannon and S. Singh. Models for automated earthmoving. In Experimental Robotics VI, pages 163–172, Springer, London 2000. doi: 10.1007/BFb0119395.
[19] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 1989.
[20] M. Bodur, H. Zontul, A. Ersak, A.J. Koivo, H.O. Yurtseven, E. Kocaoglan, and G. Pasamehmetoglu. Dynamic cognitive force control for an automatic land excavation robot. In Proceedings of MELECON ’94. Mediterranean Electrotechnical Conference, pages 703–706, Antalya, Turkey, 12-14 April 1994. doi: 10.1109/MELCON.1994.380908.
[21] A.J. Koivo, M. Thoma, E. Kocaoglan, and J. Andrade-Cetto. Modeling and control of excavator dynamics during digging operation. Journal of Aerospace Engineering, 9(1):10–18, 1996. doi: 10.1061/(ASCE)0893-1321(1996)9:1(10).
[22] S. Li, J. Yang, W.H. Chen, and X. Chen. Disturbance Observer Based Control: Methods and Applications. CRC Press, 2014.
[23] S. Mohan and J. K. Mohanta. Dual integral sliding mode control loop for mechanical error correction in trajectory-tracking of a planar 3-PRP parallel manipulator. Journal of Intelligent & Robotic Systems, 89(3-4):371–385, 2018. doi: 10.1007/s10846-017-0553-2.
[24] S. Mohan. Error analysis and control scheme for the error correction in trajectorytracking of a planar 2PRP-PPR parallel manipulator. Mechatronics, 46:70–83, 2017. doi: 10.1016/j.mechatronics.2017.07.003.
[25] G.J. Maeda, I.R. Manchester, and D.C. Rye. Combined ILC and disturbance observer for the rejection of near-repetitive disturbances, with application to excavation. IEEE Transactions on Control Systems Technology, 23(5):1754–1769, 2015. doi: 10.1109/TCST.2014.2382579.
[26] W.H. Chen, D.J. Ballance, P.J. Gawthrop, and J. O’Reilly. A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47(4):932–938, 2000. doi: 10.1109/41.857974.
[27] D. Sosa-Méndez, E. Lugo-González, M. Arias-Montiel, and R.A. García-García, ADAMSMATLAB co-simulation for kinematics, dynamics, and control of the Stewart–Gough platform. International Journal of Advanced Robotic Systems, 14(4), 2017. doi: 10.1177/1729881417719824.




Artykuły / Articles


DOI: 10.24425/ame.2019.128442 ; ISSN 0004-0738, e-ISSN 2300-1895


Archive of Mechanical Engineering; 2019; vol. 66; No 2; 153-169