Szczegóły
Tytuł artykułu
A field-circuit model of the hybrid magnetic bearingTytuł czasopisma
Archive of Mechanical EngineeringRocznik
2019Wolumin
vol. 66Numer
No 2Afiliacje
Wajnert, Dawid : Opole University of Technology, Department of Electrical Engineering and Mechatronics, Opole, Poland.Autorzy
Słowa kluczowe
dynamic simulation ; field-circuit model ; hybrid magnetic bearingWydział PAN
Nauki TechniczneZakres
191-208Wydawca
Polish Academy of Sciences, Committee on Machine BuildingBibliografia
[1] G. Schweitzer and H. Maslen. Magnetic bearings, theory, design, and application to rotating machinery. Springer, 2009.[2] L. Ji, L. Xu, and Ch. Jin. Research on a low power consumption six-pole heteropolar hybrid magnetic bearing. IEEE Transactions on Magnetics, 49(8):4918–4926, 2013. doi: 10.1109/TMAG.2013.2238678.
[3] A. Piłat. Active magnetic suspension and bearing. In G. Petrone and G. Cammarata, Recent advances in modelling and simulation, chapter 24, pages 453–470. I-Tech Education and Publishing, 2008.
[4] A. Iordanidis, R. Wrobel, D. Holliday, and P. Mellor. A field-circuit model of an electrical gearbox actuator. In Proceedings of Second International Conference on Power Electronics, Machines and Drives (PEMD 2004), pages 21–26, Edinburgh, UK, 31 March–2 April, 2004. doi: 10.1049/cp:20040410.
[5] B. Tomczuk, A. Waindok, and D. Wajnert. Transients in the electromagnetic actuator with the controlled supplier. Journal of Vibroengineering, 14(1):39–44, 2012. https://www.jvejournals.com/article/10546/pdf.
[6] B. Tomczuk and M. Sobol. A field-network model of a linear oscillating motor and its dynamics characteristics. IEEE Transactions on Magnetics, 41(8):2362–2367, 2005. doi: 10.1109/TMAG.2005.852941.
[7] B. Tomczuk and D.Wajnert. Field–circuit model of the radial active magnetic bearing system. Electrical Engineering, 100(4):2319–2328, 2018. doi: 10.1007/s00202-018-0707-7.
[8] J. Zimon, B. Tomczuk, and D. Wajnert. Field-circuit modeling of AMB system for various speeds of the rotor. Journal of Vibroengineering, 14(1):165–170, 2012. https://www.jvejournals.com/article/10565/pdf.
[9] M. Łukaniszyn, M. Jagieła and, R.Wróbel. Electromechanical properties of a disc-type salient pole brushless DC motor with different pole numbers. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(2):285–303, 2003. doi: 10.1108/03321640310459216.
[10] M. Łukaniszyn, R. Wróbel, and M. Jagieła. Field-circuit analysis of construction modifications of a torus-type PMDC motor. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(2):337–355, 2003. doi: 10.1108/03321640310459261.
[11] R. Pollanen, J. Nerg, and O. Pyrhonen. Reluctance network method based dynamic model of radial active magnetic bearings. In Proceedings of the 2005 IEEE International Magnetics Conference (INTERMAG), pages 715–716, Nagoya, Japan, 4–8 April, 2005. doi: 10.1109/INTMAG.2005.1464144.
[12] M. Antila, E. Lantto and A. Arkkio. Determination of forces and linearized parameters of radial active magnetic bearings by finite element technique. IEEE Transactions on Magnetics, 34(3):684–694, 1998. doi: 10.1109/20.668066.
[13] B. Polajzer, G. Stumberger, J. Ritonja, and D. Dolinar. Variations of active magnetic bearings linearized model parameters analyzed by finite element computation. IEEE Transactions on Magnetics, 44(6):1534–1537, 2008. doi: 10.1109/TMAG.2007.916650.
[14] B. Tomczuk and D. Koteras. 3D Field Analysis in 3-phase amorphous modular transformer under increased frequency operation. Archives of Electrical Engineering, 64(1):119–127, 2015. doi: 10.1515/aee-2015-0011.
[15] Z. Badics and Z.J. Cendes. Source field modeling by mesh incidence matrices. IEEE Transactions on Magnetics, 43(4):1241–1244, 2007. doi: 10.1109/TMAG.2006.890967.
[16] D. Wajnert and B. Tomczuk. Simulation for the determination of the hybrid magnetic bearing’s electromagnetic parameters. Przegląd Elektrotechniczny, 93(2):157–160, 2017. http://pe.org.pl/articles/2017/2/34.pdf.
[17] A. Mystkowski. Energy saving robust control of active magnetic bearings in flywheel. Acta Mechanica et Automatica, 6(3):72–76, 2012.
[18] A. Piłat. PD control strategy for 3 coils AMB. In Proceedings of the 10th International Symposium on Magnetic Bearing, pages 34–39, Martigny, Switzerland, August 21–23, 2006.
[19] D. Kozanecka. Digitally controlled magnetic bearing. Łódz University of Technology, 2001 (in Polish).
[20] S. Myburgh, G. von Schoor, and E. O. Ranft. A non-linear simulation model of an active magnetic bearings supported rotor system. In Proceedings of The XIX International Conference on Electrical Machines (ICEM 2010), pages 1–6, Rome, Italy, 6–8 September 2010. doi: 10.1109/ICELMACH.2010.5607982.
[21] Z. Gosiewski and A. Mystkowski. Robust control of active magnetic suspension: Analytical and experimental results. Mechanical Systems and Signal Processing, 22(6):1297–1303, 2008. doi: 10.1016/j.ymssp.2007.08.005.
[22] A. Mystkowski. Robust control of vibration of the magnetically suspended rotor. Ph.D. Thesis, AGH University of Science and Technology, Cracow, Poland, 2007 (in Polish).
[23] A. Piłat. Control of magnetic levitation systems. Ph.D. Thesis, AGH University of Science and Technology, Cracow, Poland, 2002 (in Polish).
[24] Z. Gosiewski. Magnetic bearings for rotating machines. Controlling and research. Biblioteka Naukowa Instytutu Lotnictwa, 1999 (in Polish).
[25] K. Falkowski. The development of the laboratory model of the gyroscope with the magnetically levitating rotor and its research. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 1999 (in Polish).
[26] G.F. Franklin, J.D. Powell and A. Emami-Naeini. Feedback control of dynamic systems. Prentice Hall, 2002.
[27] S. Szymaniec. “Measurement paths” used to measure relative vibrations in electric machines. Zeszyty Problemowe – Maszyny Elektryczne, 81:55–60, 2009 (in Polish).