Szczegóły

Tytuł artykułu

Buckling of moderately thick annular plates subjected to torque

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2019

Wolumin

vol. 66

Numer

No 2

Afiliacje

Bagheri, Hamed : Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran. ; Kiani, Yaser : Faculty of Engineering, Shahrekord University, Shahrekord, Iran. ; Eslami, Mohammad Reza : Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran.

Autorzy

Słowa kluczowe

annular plate ; torque ; generalized differential quadrature ; asymmetric buckling ; trigonometric expansion

Wydział PAN

Nauki Techniczne

Zakres

209-227

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] W.R. Dean. The elastic stability of an annular plate. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(737):268–284, 1924. doi: 10.1098/rspa.1924.0068.
[2] J. Tani and T. Nakamura. Dynamic stability of annular plates under pulsating torsion. Journal of Applied Mechanics, 47(3):595–600, 1980. doi: 10.1115/1.3153739.
[3] J. Tani. Dynamic stability of orthotropic annular plates under pulsating torsion. The Journal of the Acoustical Society of America, 69(6):1688–1694, 1981. doi: 10.1121/1.385948.
[4] D. Durban and Y. Stavsky. Elastic buckling of polar-orthotropic annular plates in shear. International Journal of Solids and Structures, 18(1):51–58, 1982. doi: 10.1016/0020-7683(82)90015-4.
[5] T. Irie, G. Yamada, and M. Tsujino. Vibration and stability of a variable thickness annular plate subjected to a torque. Journal of Sound and Vibration, 85(2):277–285, 1982. doi: 10.1016/0022-460X(82)90522-3.
[6] T. Irie, G. Yamada, and M. Tsujino. Buckling loads of annular plates subjected to a torque. Journal of Sound and Vibration, 86(1):145–146, 1983. doi: 10.1016/0022-460X(83)90951-3.
[7] J. Zajączkowski. Stability of transverse vibration of a circular plate subjected to a periodically varying torque. Journal of Sound and Vibration, 89(2):273–286, 1983. doi: 10.1016/0022-460X(83)90394-2.
[8] H. Doki and J. Tani. Buckling of polar orthotropic annular plates under internal radial load and torsion. International Journal of Mechanical Sciences, 27:429–437, 1985. doi: 10.1016/0020-7403(85)90033-5.
[9] M. Hamada and T. Harima. In-plane torsional buckling of an annular plate. Bulletin of JSME, 29(250):1089–1095, 1986. doi: 10.1299/jsme1958.29.1089.
[10] E. Ore and D. Durban. Elastoplastic buckling of annular plates in pure shear. Journal of Applied Mechanics, 56(3):644–651, 1989. doi: 10.1115/1.3176141.
[11] Chang-Jun Cheng and Xiao-an Lui. Buckling and post-buckling of annular plates in shearing, Part I: Buckling. Computer Methods in Applied Mechanics and Engineering, 92(2):157–172, 1991. doi: 10.1016/0045-7825(91)90237-Z.
[12] Chang-Jun Cheng and Xiao-an Lui. Buckling and post-buckling of annular plates in shearing, Part II: Post-buckling. Computer Methods in Applied Mechanics and Engineering, 92(2):173–191, 1991. doi: 10.1016/0045-7825(91)90238-2.
[13] P. Singhatanadgid and V. Ungbhakorn. Scaling laws for buckling of polar orthotropic annular plates subjected to compressive and torsional loading. Thin-Walled Structures, 43(7):1115–1129, 2005. doi: 10.1016/j.tws.2004.11.004.
[14] T.X. Wu. Analytical study on torsional vibration of circular and annular plate. Journal of Mechanical Engineering Science, 220(4):393–401, 2006. doi: 10.1243/09544062JMES167.
[15] R. Maretic, V. Glavardanov, and D. Radomirovic. Asymmetric vibrations and stability of a rotating annular plate loaded by a torque. Meccanica, 42(6):537–546, 2007. doi: 10.1007/s11012-007-9080-8.
[16] S.E. Ghiasian, Y. Kiani, M. Sadighi, and M.R. Eslami. Thermal buckling of shear deformable temperature dependent circular annular FGM plates. International Journal of Mechanical Sciences, 81:137–148, 2014. doi: 10.1016/j.ijmecsci.2014.02.007.
[17] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation. Computers & Mathematics with Applications, 75(5):1566–1581, 2018. doi: 10.1016/j.camwa.2017.11.021.
[18] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric compressive stability of rotating annular plates. European Journal of Computational Mechanics, 2019. doi: 10.1080/17797179.2018.1560989.
[19] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells, Theory and Application. CRC Press, 2nd Edition, 2003.
[20] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermal buckling of annular plates on a partial elastic foundation. Journal of Thermal Stresses, 40(8):1015–1029, 2017. doi: 10.1080/01495739.2016.1265474.
[21] H. Bagheri, Y. Kiani, and M.R. Eslami. Asymmetric thermo-inertial buckling of annular plates. Acta Mechanica, 228(4):1493–1509, 2017. doi: 10.1007/s00707-016-1772-5.
[22] D.O. Brush and B.O. Almroth. Buckling of Bars, Plates, and Shells. McGraw-Hill, New York, 1975.
[23] M.R. Eslami. Thermo-Mechanical Buckling of Composite Plates and Shells. Amirkabir University Press, Tehran, 2010.
[24] Y. Kiani Y and M.R. Eslami. An exact solution for thermal buckling of annular FGM plates on an elastic medium. Composites Part B: Engineering, 45(1):101–110, 2013. doi: 10.1016/j.compositesb.2012.09.034.
[25] F. Tornabene, N. Fantuzzi F. Ubertini, and E. Viola. Strong formulation finite element method based on differential quadrature: a survey. Applied Mechanics Reviews, 67(2):020801-020801-55, 2015. doi: 10.1115/1.4028859.

Data

2019.05.15

Typ

Artykuły / Articles

Identyfikator

DOI: 10.24425/ame.2019.128445 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; 2019; vol. 66; No 2; 209-227
×