Details

Title

Comparative study of cooling of automobile LED headlights without and with fins and finding comfortable operating conditions

Journal title

Archive of Mechanical Engineering

Yearbook

2019

Volume

vol. 66

Issue

No 3

Authors

Affiliation

Mishra, Manbodh Kumar : Department of Mechanical Engineering, National Institute of Technology Warangal, Telangana, India. ; Chandramohan, V.P. : Department of Mechanical Engineering, National Institute of Technology Warangal, Telangana, India. ; Balasubramanian, Karthik : Department of Mechanical Engineering, National Institute of Technology Warangal, Telangana, India.

Keywords

LED lights ; automobile headlight ; finite element method ; junction temperature ; safe working conditions

Divisions of PAS

Nauki Techniczne

Coverage

295-314

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] B.P. Minaker and Z. Yao. Design and analysis of an interconnected suspension for a small off-road vehicle. Archive of Mechanical Engineering, 64(1):5–21, 2017. doi: 10.1515/meceng-2017-0001.
[2] X-J. Zhao, Y-X. Cai, J. Wang, X-H. Li, and C. Zhang. Thermal model design and analysis of the high-power LED automotive headlight cooling device. Applied Thermal Engineering, 75:248–258, 2015. doi: 10.1016/j.applthermaleng.2014.09.066.
[3] D. Jang, S.J. Park, S.J. Yook, and K.S. Lee. The orientation effect for cylindrical heat sinks with applications to LED light bulbs. International Journal of Heat and Mass Transfer, 71:496–502, 2014. doi: 10.1016/j.ijheatmasstransfer.2013.12.037.
[4] N. Wang, J. Liu, Q. Zhang, H. Yang, and M. Tan. Fatigue life evaluation and failure analysis of light beam direction adjusting mechanism of an automobile headlight exposed to random loading. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2):224-231, 2017. doi: 10.1177/0954407017740445.
[5] L. Sun, J. Zhu, and H. Wong. Simulation and evaluation of the peak temperature in LED light bulb heat sink. Microelectronics Reliability, 61:140–144, 2016. doi: 10.1016/j.microrel.2015.12.023.
[6] D. Luo, P. Ge, D. Liu, and and H. Wang. A combined lens design for an LED lowbeam motorcycle headlight. Lighting Research & Technology, 50(3):456–466, 2017. doi: 10.1177/1477153517697370.
[7] L. Kim, J.H. Choi, S.H. Jang, and M.W. Shin. Thermal analysis of LED array system with heat pipe. Thermochimica Acta, 455(1-2):21–25, 2007. doi: 10.1016/j.tca.2006.11.031.
[8] X.-Y. Lu, T.-C. Hua, and Y.-P. Wang. Thermal analysis of high power LED package with heat pipe heat sink. Microelectronics Journal, 42(11):1257–1262, 2011. doi: 10.1016/j.mejo.2011.08.009.
[9] C.-S. Kim, J.-G. Lee, J.-H. Cho, D.-Y. Kim, and T.-B.Seo. Experimental study of humidity control methods in a light-emitting diode (LED) lighting device. Journal of Mechanical Science and Technology, 29(6):2501–2508, 2015. doi: 10.1007/s12206-015-0546-7.
[10] X.-Y. Lu, T.-C. Hua, M.-J. Liu, and Y.-X. Cheng. Thermal analysis of loop heat pipe used for high-power LED. Thermochimica Acta, 493(1-2):25–29, 2009. doi: 10.1016/j.tca.2009.03.016.
[11] M. Janicki, T. Torzewicz, A. Samson, T. Raszkowski, A.Napieralski. Experimental identification of LED compact thermal model element values. Microelectronics Reliability, 86:20–26, 2018. doi: 10.1016/j.microrel.2018.05.003.
[12] K.C. Yung, H. Liem, and H.S. Choy. Heat transfer analysis of a high-brightness LED array on PCB under different placement configurations. International Communications in Heat and Mass Transfer, 53:79–86, 2014. doi: 10.1016/j.icheatmasstransfer.2014.02.014.
[13] M.W. Shin, and S.H. Jang. Thermal analysis of high power LED packages under the alternating current operation. Solid-State Electronics, 68:48–50, 2012. doi: 10.1016/j.sse.2011.10.033.
[14] J. Zhou, J. Huang, Y. Wang, and Z. Zhou. Thermal distribution of multiple LED module. Applied Thermal Engineering, 93:122–130, 2016. doi: 10.1016/j.applthermaleng.2015.09.022.
[15] K.-S. Yang, C.-H. Chung, C.-W. Tu, C.-C. Wong, T.-Y. Yang, and M.-T. Lee. Thermal spreading resistance characteristics of a high power light emitting diode module. Applied Thermal Engineering, 70(1):361–368, 2014. doi: 10.1016/j.applthermaleng.2014.05.028.
[16] K.-Y. Liao and S.H. Tseng. A superior design for high power GaN-based light-emitting diode packages. Solid-State Electronics, 104:96–100, 2015. doi: 10.1016/j.sse.2014.11.008.
[17] K.F. Sokmen, E. Pulat, N. Yamankaradeniz, and S. Coskun. Thermal computations of temperature distribution and bulb heat transfer in an automobile headlamp. Heat and Mass Transfer, 50(2):199–210, 2014. doi: 10.1007/s00231-013-1229-5.
[18] I. Kim, S. Cho, D. Jung, C.R. Lee, D. Kim, and B.J. Baek. Thermal analysis of high power LEDs on the MCPCB. Journal of Mechanical Science and Technology, 27(5):1493–1499, 2013. doi: 10.1007/s12206-013-0329-y.
[19] V.P. Chandramohan and P. Talukdar. Three dimensional numerical modeling of simultaneous heat and moisture transfer in a moist object subjected to convective drying. International Journal of Heat Mass Transfer, 53(21-22):4638–4650, 2010. doi: 10.1016/j.ijheatmasstransfer.2010.06.029.
[20] S. Yadav, A.B. Lingayat, V.P. Chandramohan, and V.R.K. Raju. Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer. Heat and Mass Transfer, 54(12):3631–3646, 2018. doi: 10.1007/s00231-018-2390-7.
[21] G. Arunsandeep and V.P. Chandramohan. Numerical solution for temperature and moisture distribution of rectangular, cylindrical and spherical objects during drying. Journal of Engineering Physics and Thermophysics, 91(4):895–906, 2018. doi: 10.1007/s10891-018-1814-z.
[22] T.A. Alves, P.H.D. Santos, and M.A. Barbur. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow. Frontiers of Mechanical Engineering, 10(3):263–276, 2015. doi: 10.1007/s11465-015-0345-y.
[23] T.L. Bergman, F.P. Incropera, D.P. Dewitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition. John Wiley & Sons, 2011.

Date

2019.09.03

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2019.129677 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2019; vol. 66; No 3; 295-314
×