### Details

#### Title

Thermal buckling of temperature-dependent functionally graded Timoshenko beams#### Journal title

Archive of Mechanical Engineering#### Yearbook

2019#### Volume

vol. 66#### Issue

No 4#### Affiliation

Chen, Wei-Ren : Department of Mechanical Engineering, Chinese Culture University, Taipei, Taiwan. ; Chen, Chun-Sheng : Department of Mechanical Engineering, Lunghwa University of Science and Technology, Guishan Shiang 33306, Taiwan. ; Chang, Heng : Department of Mechanical Engineering, Chinese Culture University, Taipei, Taiwan.#### Authors

#### Keywords

thermal buckling ; functionally graded material ; transformed-section method ; temperature-dependent properties#### Divisions of PAS

Nauki Techniczne#### Coverage

393-415#### Publisher

Polish Academy of Sciences, Committee on Machine Building#### Bibliography

[1] M. Aydogdu. Semi-inverse method for vibration and buckling of axially functionally graded beams.*Journal of Reinforced Plastics and Composites*, 27(7):683–691, 2008. doi: 10.1177/0731684407081369.

[2] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks.

*Composite Structures*, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.

[3] A. Shahba, R. Attarnejad, M.T. Marvi, and S. Hajilar. Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classic and nonclassical boundary conditions.

*Composites Part B: Engineering*, 42(4):801–808, 2011. doi: 10.1016/j.compositesb.2011.01.017.

[4] A. Shahba and S. Rajasekaran. Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials.

*Applied Mathematical Modelling*, 36(7):3094–3111, 2012. doi: 10.1016/j.apm.2011.09.073.

[5] T.K. Nguyen, T.P. Vo, and H.T. Thai. Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory.

*Composites Part B: Engineering*, 55:147–157, 2013. doi: 10.1016/j.compositesb.2013.06.011.

[6] S.R. Li and R.C. Batra. Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams.

*Composite Structures*, 95:5–9, 2013. doi: 10.1016/j.compstruct.2012.07.027.

[7] J. Rychlewska. Buckling analysis of axially functionally graded beams.

*Journal of Applied Mathematics and Computational Mechanics*, 13(4):103–108, 2014.

[8] S.R. Li, X.Wang, and Z.Wan. Classical and homogenized expressions for buckling solutions of functionally graded material Levinson beams.

*Acta Mechanica Solida Sinica*, 28(5):592–604, 2015. doi: 10.1016/S0894-9166(15)30052-5.

[9] M.E. Torki and J.N. Reddy. Buckling of functionally-graded beams with partially delaminated piezoelectric layers.

*International Journal of Structural Stability and Dynamics*, 16(3):1450104, 2016. doi: 10.1142/S0219455414501041.

[10] B. Shvartsman and J. Majak. Numerical method for stability analysis of functionally graded beams on elastic foundation.

*Applied Mathematical Modelling*, 40(5-6):3713–3719, 2016. doi: 10.1016/j.apm.2015.09.060.

[11] Y. Huang, M. Zhang, and H.W. Rong. Buckling analysis of axially functionally graded and nonuniform beams based on Timoshenko theory.

*Acta Mechanica Solida Sinica*, 29(2):200–207, 2016. doi: 10.1016/S0894-9166(16)30108-2.

[12] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory.

*Composites Part B: Engineering,*109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.

[13] H. Deng, K. Chen, W. Cheng, and S.G. Zhao. Vibration and buckling analysis of doublefunctionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation.

*Composite Structures*, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.

[14] V. Kahya and M. Turan. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element.

*Composites Part B: Engineering*, 146:198–212, 2018. doi: 10.1016/j.compositesb.2015.02.032.

[15] Y. Kiani and M.R. Eslami. Thermal buckling analysis of functionally graded materials beams.

*International Journal of Mechanics and Materials in Design*, 6(3):229–238, 2010. doi: 10.1007/s10999-010-9132-4.

[16] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams.

*International Journal of Mechanical Sciences*, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.

[17] A. Fallah and M.M.Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation.

*Composites Part B: Engineering*, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.

[18] Y. Kiani and M.R. Eslami. Thermomechanical buckling of temperature-dependent FGM beams.

*Latin American Journal of Solids and Structures*, 10(2):223–245, 2013. doi: 10.1590/S1679-78252013000200001.

[19] Y. Fu, Y. Chen, and P. Zhang. Thermal buckling analysis of functionally graded beam with longitudinal crack.

*Meccanica*, 48(5):1227–1237, 2013. doi: 10.1007/s11012-012-9663-x.

[20] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations.

*International Journal of Mechanical Sciences*, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.

[21] L.C. Trinh, T.P. Vo, H.T. Thai, and T.K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads.

*Composites Part B: Engineering*, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.

[22] Y. Sun, S.R. Li, and R.C. Batra. Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation.

*Journal of Thermal Stresses*, 39(1):11–26, 2016. doi: 10.1080/01495739.2015.1120627.

[23] T.K. Nguyen, B.D. Nguyen, T.P. Vo, and H.T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams.

*Composite Structures*, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.

[24] G.L. She, F.G. Yuan, and Y.R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory.

*Applied Mathematical Modelling*, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.

[25] M. Hosseini, F. Farhatnia, and S. Oveissi. Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via Stokes’ transformation technique.

*Research on Engineering Structures and Materials*, 4(2):103–125, 2018. doi: 10.17515/resm2016.83me1018.

[26] A. Majumdar and D. Das. A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness.

*Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications*, 232(9):769–784, 2018. doi: 10.1177/1464420716649213.

[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane.

*Composites Part B: Engineering*, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.

[28] A.C. Ugural.

*Mechanical Design: An Integrated Approach*. McGraw-Hill Company, Singapore, 2004.

[29] W.R. Chen and H. Chang. Closed-form solutions for free vibration frequencies of functionally graded Euler-Bernoulli beams.

*Mechanics of Composite Materials*, 53(1):79–98, 2017. doi: 10.1007/s11029-017-9642-3.

[30] W.R. Chen and H. Chang. Vibration analysis of functionally graded Timoshenko beams.

*International Journal of Structural Stability and Dynamics*, 18(1):1850007, 2018. doi: 10.1142/S0219455418500074.

[31] Y.S. Touloukian.

*Thermophysical Properties of High Temperature Solids Materials*. MacMillan, New York, 1967.

[32] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates.

*Journal of Thermal Stresses*, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.