Details
Title
Thermal buckling of temperature-dependent functionally graded Timoshenko beamsJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 4Affiliation
Chen, Wei-Ren : Department of Mechanical Engineering, Chinese Culture University, Taipei, Taiwan. ; Chen, Chun-Sheng : Department of Mechanical Engineering, Lunghwa University of Science and Technology, Guishan Shiang 33306, Taiwan. ; Chang, Heng : Department of Mechanical Engineering, Chinese Culture University, Taipei, Taiwan.Authors
Keywords
thermal buckling ; functionally graded material ; transformed-section method ; temperature-dependent propertiesDivisions of PAS
Nauki TechniczneCoverage
393-415Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] M. Aydogdu. Semi-inverse method for vibration and buckling of axially functionally graded beams. Journal of Reinforced Plastics and Composites, 27(7):683–691, 2008. doi: 10.1177/0731684407081369.[2] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.
[3] A. Shahba, R. Attarnejad, M.T. Marvi, and S. Hajilar. Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classic and nonclassical boundary conditions. Composites Part B: Engineering, 42(4):801–808, 2011. doi: 10.1016/j.compositesb.2011.01.017.
[4] A. Shahba and S. Rajasekaran. Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Applied Mathematical Modelling, 36(7):3094–3111, 2012. doi: 10.1016/j.apm.2011.09.073.
[5] T.K. Nguyen, T.P. Vo, and H.T. Thai. Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 55:147–157, 2013. doi: 10.1016/j.compositesb.2013.06.011.
[6] S.R. Li and R.C. Batra. Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams. Composite Structures, 95:5–9, 2013. doi: 10.1016/j.compstruct.2012.07.027.
[7] J. Rychlewska. Buckling analysis of axially functionally graded beams. Journal of Applied Mathematics and Computational Mechanics, 13(4):103–108, 2014.
[8] S.R. Li, X.Wang, and Z.Wan. Classical and homogenized expressions for buckling solutions of functionally graded material Levinson beams. Acta Mechanica Solida Sinica, 28(5):592–604, 2015. doi: 10.1016/S0894-9166(15)30052-5.
[9] M.E. Torki and J.N. Reddy. Buckling of functionally-graded beams with partially delaminated piezoelectric layers. International Journal of Structural Stability and Dynamics, 16(3):1450104, 2016. doi: 10.1142/S0219455414501041.
[10] B. Shvartsman and J. Majak. Numerical method for stability analysis of functionally graded beams on elastic foundation. Applied Mathematical Modelling, 40(5-6):3713–3719, 2016. doi: 10.1016/j.apm.2015.09.060.
[11] Y. Huang, M. Zhang, and H.W. Rong. Buckling analysis of axially functionally graded and nonuniform beams based on Timoshenko theory. Acta Mechanica Solida Sinica, 29(2):200–207, 2016. doi: 10.1016/S0894-9166(16)30108-2.
[12] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.
[13] H. Deng, K. Chen, W. Cheng, and S.G. Zhao. Vibration and buckling analysis of doublefunctionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Composite Structures, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.
[14] V. Kahya and M. Turan. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element. Composites Part B: Engineering, 146:198–212, 2018. doi: 10.1016/j.compositesb.2015.02.032.
[15] Y. Kiani and M.R. Eslami. Thermal buckling analysis of functionally graded materials beams. International Journal of Mechanics and Materials in Design, 6(3):229–238, 2010. doi: 10.1007/s10999-010-9132-4.
[16] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.
[17] A. Fallah and M.M.Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[18] Y. Kiani and M.R. Eslami. Thermomechanical buckling of temperature-dependent FGM beams. Latin American Journal of Solids and Structures, 10(2):223–245, 2013. doi: 10.1590/S1679-78252013000200001.
[19] Y. Fu, Y. Chen, and P. Zhang. Thermal buckling analysis of functionally graded beam with longitudinal crack. Meccanica, 48(5):1227–1237, 2013. doi: 10.1007/s11012-012-9663-x.
[20] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.
[21] L.C. Trinh, T.P. Vo, H.T. Thai, and T.K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.
[22] Y. Sun, S.R. Li, and R.C. Batra. Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation. Journal of Thermal Stresses, 39(1):11–26, 2016. doi: 10.1080/01495739.2015.1120627.
[23] T.K. Nguyen, B.D. Nguyen, T.P. Vo, and H.T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.
[24] G.L. She, F.G. Yuan, and Y.R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Applied Mathematical Modelling, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.
[25] M. Hosseini, F. Farhatnia, and S. Oveissi. Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via Stokes’ transformation technique. Research on Engineering Structures and Materials, 4(2):103–125, 2018. doi: 10.17515/resm2016.83me1018.
[26] A. Majumdar and D. Das. A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(9):769–784, 2018. doi: 10.1177/1464420716649213.
[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[28] A.C. Ugural. Mechanical Design: An Integrated Approach. McGraw-Hill Company, Singapore, 2004.
[29] W.R. Chen and H. Chang. Closed-form solutions for free vibration frequencies of functionally graded Euler-Bernoulli beams. Mechanics of Composite Materials, 53(1):79–98, 2017. doi: 10.1007/s11029-017-9642-3.
[30] W.R. Chen and H. Chang. Vibration analysis of functionally graded Timoshenko beams. International Journal of Structural Stability and Dynamics, 18(1):1850007, 2018. doi: 10.1142/S0219455418500074.
[31] Y.S. Touloukian. Thermophysical Properties of High Temperature Solids Materials. MacMillan, New York, 1967.
[32] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.