Szczegóły

Tytuł artykułu

Improved method of gear hobbing computer aided simulation

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2019

Wolumin

vol. 66

Numer

No 4

Afiliacje

Hrytsay, Ihor : Department of Mechanical Engineering Technologies, Institute of Engineering Mechanics and Transport, Lviv Polytechnic National University, Lviv, Ukraine. ; Stupnytskyy, Vadym : Department of Mechanical Engineering Technologies, Institute of Engineering Mechanics and Transport, Lviv Polytechnic National University, Lviv, Ukraine. ; Topchii, Vladyslav : Department of Mechanical Engineering Technologies, Institute of Engineering Mechanics and Transport, Lviv Polytechnic National University, Lviv, Ukraine.

Autorzy

Słowa kluczowe

gear hobbing ; cutting process simulation ; kinematics of cutting

Wydział PAN

Nauki Techniczne

Zakres

475-494

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] V. Dimitriou and A. Antoniadis. CAD-based simulation of the hobbing process for the manufacturing of spur and helical gears. The International Journal of Advanced Manufacturing Technology, 41(3-4):347–357, 2009. doi: 10.1007/s00170-008-1465-x.
[2] V. Dimitriou, N. Vidakis, and A. Antoniadis. Advanced computer aided design simulation of gear hobbing by means of three-dimensional kinematics modeling. Journal of Manufacturing Science and Engineering, 129(5):911–918, 2007. doi: 10.1115/1.2738947.
[3] K.-D. Bouzakis, S.Kombogiannis, A. Antoniadis, andN.Vidakis. Gear hobbing cutting process simulation and toolwear prediction models. Journal of Manufacturing Science and Engineering, 124(1):42–51, 2001. doi: 10.1115/1.1430236.
[4] J. Edgar. Hobs and Gear Hobbing: A Treatise on the Design of Hobs and Investigation into the Conditions Met with Gear Hobbing. Forgotten Books, 2015.
[5] N. Sabkhi, C. Pelaingre, C. Barlier, A. Moufki, and M. Nouari. Characterization of the cutting forces generated during the gear hobbing process: Spur gear. Procedia CIRP, 31:411–416, 2015. doi: 10.1016/j.procir.2015.03.041.
[6] W. Liu, D. Ren, S.Usui, J.Wadell, and T.D.Marusich. A gear cutting predictive model using the finite element method. Procedia CIRP, 8:51–56, 2013. doi: 10.1016/j.procir.2013.06.064.
[7] N. Tapoglou, T. Belis, Taxiarchis, D. Vakondios, and A. Antoniadis. CAD-based simulation of gear hobbing. In Proceeding of 31st International Symposium on Mechanics and Materials, volume 1, pages 41–57, Agia Marina, Greece. 9-14 May, 2010.
[8] C. Brecher, M. Brumm, and M. Krömer. Design of gear hobbing processes using simulations and empirical data. Procedia CIRP, 33:484-489, 2015. doi: 10.1016/j.procir.2015.06.059.
[9] G. Sulzer. Increased performance in gears production by accurate detection of machining kinematics. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1974 (in German).
[10] P. Gutman. Machining force calculation during hobbing. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 1988 (in German).
[11] X. Dong, C. Liao, Y.C. Shin, and H.H. Zhang. Machinability improvement of gear hobbing via process simulation and tool wear predictions. The International Journal of Advanced Manufacturing Technology, 86(9-12):2771–2779, 2016. doi: 10.1007/s00170-016-8400-3.
[12] V. Sinkevicius. Simulation of gear hobbing forces. Kaunas University of Technology Journal: Mechanika, 2(28):58–63, 2001.
[13] I. Hrytsay. Simulation of cross-sections, forces and torques during gear machining by hobs. Mashynoznavstvo, 7:19–23, 1998 (In Ukrainian).
[14] I. Hrytsay andV. Sytnik. Force field of screw-type toothing cutter and its quantitative evaluation. Optimization and Technical Control in Engineering and Instrumentation, 371:3–13, 1999 (In Ukrainian).
[15] V. Stupnytskyy. Features of functionally-oriented engineering technologies in concurrent environment. International Journal of Engineering Research and Technology, 2(9):1181–1186, 2013.
[16] V. Stupnytskyy. Thermodynamic pattern of the workpiece machining by the rheological imitation modelling in deform-3D system. O ptimization and Technical Control in Engineering and Instrumentation, 772:102–114, 2013.
[17] V. Stupnytskyy. Computer aided machine-building technological process planning by the methods of concurrent engineering. Europaische Fachhochschule: Wissenschaftliche Zeitschrift, ORT Publishing, 2:50–53, 2013.
[18] N. Sabkhi, A. Moufki, M. Nouari, C. Pelaingre, and C. Barlier. Prediction of the hobbing cutting forces from a thermomechanical modeling of orthogonal cutting operation. J ournal of Manufacturing Processes, 23:1–12, 2016. doi: 10.1016/j.jmapro.2016.05.002.
[19] F. Klocke. Manufacturing Processes 1: Cutting. Springer, 2011.

Data

06.12.2019

Typ

Artykuły / Articles

Identyfikator

DOI: 10.24425/ame.2019.131358 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; 2019; vol. 66; No 4; 475-494
×