Details
Title
Impact point prediction guidance parametric study for 155 mm rocket assisted artillery projectile with lateral thrustersJournal title
Archive of Mechanical EngineeringYearbook
2020Volume
vol. 67Issue
No 1Affiliation
Szklarski, Adrian : Faculty of Power and Aeronautical Engineering, Warszaw University of Technology, Poland ; Głębocki, Robert : Faculty of Power and Aeronautical Engineering, Warszaw University of Technology, Poland ; Jacewicz, Mariusz : Faculty of Power and Aeronautical Engineering, Warszaw University of Technology, PolandAuthors
Keywords
lateral thruster ; Monte Carlo ; impact point predictionDivisions of PAS
Nauki TechniczneCoverage
31-56Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] Z. Guodong. The Study of the Modeling simulation for the Rocket-Assisted Cartridge. IOP Conference Series Materials Science and Engineering, 2018. doi: 10.1088/1757-899X/439/4/042038.[2] F.R. Gantmakher and L.M. Levin. The Flight of Uncontrolled Rockets. Pergamon Press Ltd., 1964.
[3] E. Gagnon and M. Lauzon. Low cost guidance and control solution for in-service unguided 155 mm artillery shell. Technical Report 2008-333, DRDC Valcaltier, Canada, 2009.
[4] E. Gagnon and A. Vachon. Efficiency analysis of Canards-based course correction fuze for a 155-mm spin-stabilized projectile. Journal of Aerospace Engineering, 29(6):04016055, 2016. doi: 10.1061/(ASCE)AS.1943-5525.0000634.
[5] B. Pavkovic, M. Pavic, and D. Cuk. Frequency-modulated pulse-jet control of an artillery rocket. Journal of Spacecraft and Rockets, 49(2):286–294, 2012. doi: 10.2514/1.57432.
[6] B. Pavkovic, M. Pavic and D. Cuk. Enhancing the precision of artillery rockets using pulsejet control systems with active damping. Scientific Technical Review, 62(2):10–19, 2012.
[7] T. Jitpraphai, B. Burchett, and M. Costello. A comparison of different guidance schemes for a direct fire rocket with a pulse jet control mechanism. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Montreal, Canada, 6-9 August, 2001. doi: 10.2514/6.2001-4326.
[8] N. Slegers. Model predictive control of a low speed munition. AIAA Atmospheric Flight Mechanics Conference and Exhibit. Hilton Head, South Carolina, 20-23 August, 2007. doi: 10.2514/6.2007-6583.
[9] D. Corriveau, P. Wey, and C. Berner. Thrusters pairing guidelines for trajectory corrections of projectiles. Journal of Guidance, Control, and Dynamics, 34(4):1120–1128, 2011. doi: 10.2514/1.51811.
[10] D. Corriveau, C. Berner, and V. Fleck. Trajectory correction using impulse thrusters for conventional artillery projectiles. Proceedings of 23rd International Symposium on Ballistics, pages 639–646, Tarragona, Spain, 16-20 April, 2007.
[11] C. Kwiecień. A concept of the air drag law for spherical fragments prepared on the basis of AASTP-1 allied publication data. Issues of Armament Technology, 146(2):73–91, 2018.
[12] A. Faryński, A. Długołęcki and Z. Ziółkowski. Measurements of characteristics of warhead fragments of the 70-mm air-to-ground unguided missile. Bulletin of the Military University of Technology, 57(3):173–180, 2008 (in Polish).
[13] Military Handbook. Missile Flight Simulation. Part One. Surface-to-Air Missiles. Department of Defense, USA, 1995.
[14] F. Fresconi and M. Ilg. Model predictive control of agile projectiles. AIAA Atmospheric Flight Mechanics Conference, Minneapolis, USA, 13-16 August 2012. doi: 10.2514/6.2012-4860.
[15] P. Lichota and J. Szulczyk. Output error method for tiltrotor unstable in hover. Archive of Mechanical Engineering, 64(1):23–36, 2017. doi: 10.1515/meceng-2017-0002.
[16] P. Lichota, J. Szulczyk, M.B. Tischler, and T. Berger. Frequency responses identification from multi-axis maneuver with simultaneous multisine inputs. Journal of Guidance, Control and Dynamics, 42(11):2550–2556, 2019. doi: 10.2514/1.G004346.
[17] T. Jitpraphai and M. Costello. Dispersion reduction of a direct-fire rocket using lateral pulse jets. Journal of Spacecraft and Rockets, 38(6):929–936, 2001. doi: 10.2514/2.3765.
[18] EDePro. 155 mm Hybrid Rocket Assist – Base Bleed Artillery Projectile [Online]. Available: www.edepro.com/files/RABB_catalogue.pdf [20 08 2019].
[19] U.S. Standard Atmosphere. National Aeronautics and Space Administration, Washington, D.C., USA, 1976.
[20] F. Fresconi, G. Cooper, and M. Costello. Practical assessment of real-time impact point estimators for smart weapons. Journal of Aerospace Engineering, 24(1):1–11, 2011. doi: 10.1061/(ASCE)AS.1943-5525.0000044.
[21] A. Elsaadany and Yi Wen-jun. Accurate trajectory prediction for typical artillery projectile. Proceedings of the 33rd Chinese Control Conference, pages 6368–6374, Nanjing, China, 28–30 July, 2014. doi: 10.1109/ChiCC.2014.6896037.
[22] R. McCoy. Modern Exterior Ballistics. Schiffer Publishing, Ltd., 2012.
[23] B. Burchett and M. Costello. Model predictive lateral pulse jet control of an atmospheric rocket. Journal of Guidance, Control, and Dynamics, 25(5):860–867, 2002. doi: 10.2514/2.4979.
[24] L. Hainz III and M. Costello. Modified projectile linear theory for rapid trajectory prediction. Journal of Guidance Control and Dynamics, 28(5):1006–1014, 2005. doi: 10.2514/1.8027.
[25] F. Fresconi. Guidance and control of a projectile with reduced sensor and actuator requirements. Journal of Guidance, Control, and Dynamics, 34(6):1757–1766, 2011. doi: 10.2514/1.53584.
[26] A. Calise and H. El-Shirbiny. An analysis of aerodynamic control for direct fire spinning projectiles. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001. doi: 10.2514/6.2001-4217.
[27] Y. Zhang, M. Gao, S. Yang, and D. Fang. Optimization of trajectory correction scheme for guided mortar projectiles. International Journal of Aerospace Engineering, 2015:ID618458, 2015. doi: 10.1155/2015/618458.
[28] W. Park, J. Yun, C.-K. Ryoo, and Y. Kim. Guidance law for a modern munition. International Conference on Control, Automation and Systems 2010, pages 2376–2379, Gyeonggi-do, South Korea, 27-30 October, 2010.
[29] M. Gross and M. Costello. Impact point model predictive control of a spin-stabilized projectile with instability protection. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 228(12):2215–2225, 2014. doi: 10.1177/0954410013514743.
[30] J. Rogers. Stochastic model predictive control for guided projectiles under impact area constraints. Journal of Dynamic Systems, Measurement, and Control, 137(3):034503, 2015. doi: 10.1115/1.4028084.