Szczegóły
Tytuł artykułu
An efficient parallel global optimization strategy based on Kriging properties suitable for material parameters identificationTytuł czasopisma
Archive of Mechanical EngineeringRocznik
2020Wolumin
vol. 67Numer
No 2Autorzy
Afiliacje
Roux, Emile : Université Savoie Mont-Blanc, SYMME, F-74000 Annecy, France. ; Tillier, Yannick : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France ; Kraria, Salim : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France ; Bouchard, Pierre-Olivier : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, FranceSłowa kluczowe
global optimization ; parallel computation ; Kriging meta-model ; inverse analysisWydział PAN
Nauki TechniczneZakres
169-195Wydawca
Polish Academy of Sciences, Committee on Machine BuildingBibliografia
[1] P.A. Prates, M.C Oliveira, and J.V. Fernandes. Identification of material parameters for thin sheets from single biaxial tensile test using a sequential inverse identification strategy. International Journal of Material Forming, 9:547–571, 2016. doi: 10.1007/s12289-015-1241-z.[2] M. Gruber, N. Lebaal, S. Roth, N. Harb, P. Sterionow, and F. Peyraut. Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach. International Journal of Material Forming, 9:21–33. doi: 10.1007/s12289-014-1196-5.
[3] R. Amaral, P. Teixeira, A.D. Santos, and J.C. de Sá. Assessment of different ductile damage models and experimental validation. International Journal of Material Forming, 11, 435–444, 2018. doi: 10.1007/s12289-017-1381-4.
[4] J. Nocedal and S. Wright. Numerical Optimization, 2nd ed. Springer-Verlag, New York, 2006.
[5] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. doi: 10.1093/comjnl/7.4.308.
[6] K.Y. Lee and F.F. Yang. Optimal reactive power planning using evolutionalry algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Transactions on Power Systems, 13(1):101–108, 1998. doi: 10.1109/59.651620.
[7] N. Stander, K.J. Craig, H. Müllerschön, and R. Reichert. Material identification in structural optimization using response surfaces. Structural and Multidisciplinary Optimization, 29:93–102, 2005. doi: 10.1007/s00158-004-0476-y.
[8] M. Ageno, G. Bolzon, and G. Maier. An inverse analysis procedure for the material parameter identification of elastic- plastic free-standing foils. Structural and Multidisciplinary Optimization, 38:229–243, 2009. doi: 10.1007/s00158-008-0294-8.
[9] M. Abendroth and M. Kuna. Identification of ductile damage and fracture parameters from the small punch test using neural networks. Engineering Fracture Mechanics, 73(6):710–725, 2006. doi: 10.1016/j.engfracmech.2005.10.007.
[10] R. Franchi, A. Del Prete, and D. Umbrell. Inverse analysis procedure to determine flow stress and friction data for finite element modeling of machining. International Journal of Material Forming, 10:685–695, 2017. doi: 10.1007/s12289-016-1311-x.
[11] N. Souto, A. Andrade-Campos, and S. Thuillier. Mechanical design of a heterogeneous test for material parameters identification. International Journal of Material Forming, 10:353–367, 2017. doi: 10.1007/s12289-016-1284-9.
[12] M. Rackl, K.J. Hanley, and W.A. Günthner. Verification of an automated work flow for discrete element material parameter calibration. In: Li X., Feng Y., Mustoe G. (eds.), Proceedings of the 7th International Conference on Discrete Element Methods. DEM 2016, volume 188, pages 201–208. Springer, Singapore 2017. doi: 10.1007/978-981-10-1926-5_23.
[13] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.
[14] C. Richter, T. Rößler, G. Kunze, A. Katterfeld, and F. Will. Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials – Part II: Efficient optimization-based calibration. Powder Technology, 360:967–976, 2020. doi: 10.1016/j.powtec.2019.10.052.
[15] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box function. Journal of Global Optimization, 13:455–492, 1998. doi: 10.1023/A:1008306431147.
[16] M.T.M. Emmerich, K.C. Giannakoglou, and B. Naujoks. Single- and multi-objective evolutionary optimization assisted by gaussian random field metamodels. IEEE Transactions on Evolutionary Computation, 10(4):421–439, 2006. doi: 10.1109/TEVC.2005.859463.
[17] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer Experiments. Springer, New York, 2018. doi: 10.1007/978-1-4939-8847-1.
[18] E. Brochu, V.M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report TR-2009-23, Department of Computer Science, University of British Columbia, Canada, November 2009.
[19] D. Ginsbourger, R. Riche, and L. Carraro. Kriging is well-suited to parallelize optimization. In Y. Tenne, Ch-K. Goh (eds.), Computational Intelligence in Expensive Optimization Problems, volume 2, pages 131–162, Springer-Verlag, Berlin, 2010.
[20] E. Roux and P.-O. Bouchard. Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology, 213(7):1038–1047, 2013. doi: 10.1016/j.jmatprotec.2013.01.018.
[21] E. Roux and P.-O. Bouchard. On the interest of using full field measurements in ductile damage model calibration. International Journal of Solids and Structures, 72:50–62, 2015. doi: 10.1016/j.ijsolstr.2015.07.011.
[22] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409–423, 1989.
[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M. et al. (eds,), Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, volume 1917, pages 849–858. Springer, Berlin, Heidelberg, 2000. doi: 10.1007/3-540-45356-3_83.
[24] M. Hamdaoui, F.Z. Oujebbour, A. Habbal, P. Breitkopf, and P. Villon. Kriging surrogates for evolutionary multi-objective optimization of CPU intensive sheet metal forming applications. International Journal of Material Forming, 8:469–480, 2015. doi: 10.1007/s12289-014-1190-y.
[25] J.J. Droesbeke, M. Lejeune, and G. Saporta. Statistical Analysis of Spatial Data. Editions TECHNIP, 1997 (in French).
[26] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[27] J.D. Martin and T.W. Simpson. Use of kriging models to approximate deterministic computer models. AIAA Journal, 43(4):853–863, 2005. doi: 10.2514/1.8650.
[28] J. Laurenceau and P. Sagaut. Building efficient response surface of aerodynamic function with kriging and cokriging. AIAA Journal, 46(2):498–507, 2008. doi: 10.2514/1.32308.
[29] D.R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21:345–383, 2001. doi: 10.1023/A:1012771025575.
[30] V.A. Dirk and H.G. Beyer. A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications, 24:135–159, 2003. doi: 10.1023/A:1021810301763.
[31] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. doi: 10.1093/comjnl/7.4.308.
[32] P.-O. Bouchard, J.-M. Gachet, and E. Roux. Ductile damage parameters identification for cold metal forming applications. AIP Conference Proceedings, 1353(1):47–52, 2011. doi: 10.1063/1.3589490.
[33] D. Huang, T.T. Allan, W.I. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential kriging meta-models. Journal of Global Optimization, 34:441–466, 2006. doi: 10.1007/s10898-005-2454-3.
[34] H.H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3(3):175–184, 1960. doi: 10.1093/comjnl/3.3.175.
[35] M. Pillet. The Taguchi Method Experiment Plans. Les Edition d'Organisation, 2005 (in French).
[36] H. Digonnet, L. Silva, and T. Coupez. Cimlib: A Fully Parallel Application For Numerical Simulations Based On Components Assembly. AIP Conference Proceedings, 908:269–274, 2007. doi: 10.1063/1.2740823.
[37] P.-O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin. An enhanced Lemaitre model formulation for materials processing damage computation. International Journal of Material Forming, 4:299–315, 2011. doi: 10.1007/s12289-010-0996-5.
[38] E. Roux, M. Thonnerieux, and P.-O. Bouchard. Ductile damage material parameter identification: numerical investigation. In Proceedings of the Tenth International Conference on Computational Structures Technology, paper 135, Civil-Comp Press, 2010. doi: 10.4203/ccp.93.135.