Details

Title

An efficient parallel global optimization strategy based on Kriging properties suitable for material parameters identification

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 2

Authors

Affiliation

Roux, Emile : Université Savoie Mont-Blanc, SYMME, F-74000 Annecy, France. ; Tillier, Yannick : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France ; Kraria, Salim : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France ; Bouchard, Pierre-Olivier : MINES ParisTech, PSL Research University, CEMEF-Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France

Keywords

global optimization ; parallel computation ; Kriging meta-model ; inverse analysis

Divisions of PAS

Nauki Techniczne

Coverage

169-195

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] P.A. Prates, M.C Oliveira, and J.V. Fernandes. Identification of material parameters for thin sheets from single biaxial tensile test using a sequential inverse identification strategy. International Journal of Material Forming, 9:547–571, 2016. doi: 10.1007/s12289-015-1241-z.
[2] M. Gruber, N. Lebaal, S. Roth, N. Harb, P. Sterionow, and F. Peyraut. Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach. International Journal of Material Forming, 9:21–33. doi: 10.1007/s12289-014-1196-5.
[3] R. Amaral, P. Teixeira, A.D. Santos, and J.C. de Sá. Assessment of different ductile damage models and experimental validation. International Journal of Material Forming, 11, 435–444, 2018. doi: 10.1007/s12289-017-1381-4.
[4] J. Nocedal and S. Wright. Numerical Optimization, 2nd ed. Springer-Verlag, New York, 2006.
[5] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. doi: 10.1093/comjnl/7.4.308.
[6] K.Y. Lee and F.F. Yang. Optimal reactive power planning using evolutionalry algorithms: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Transactions on Power Systems, 13(1):101–108, 1998. doi: 10.1109/59.651620.
[7] N. Stander, K.J. Craig, H. Müllerschön, and R. Reichert. Material identification in structural optimization using response surfaces. Structural and Multidisciplinary Optimization, 29:93–102, 2005. doi: 10.1007/s00158-004-0476-y.
[8] M. Ageno, G. Bolzon, and G. Maier. An inverse analysis procedure for the material parameter identification of elastic- plastic free-standing foils. Structural and Multidisciplinary Optimization, 38:229–243, 2009. doi: 10.1007/s00158-008-0294-8.
[9] M. Abendroth and M. Kuna. Identification of ductile damage and fracture parameters from the small punch test using neural networks. Engineering Fracture Mechanics, 73(6):710–725, 2006. doi: 10.1016/j.engfracmech.2005.10.007.
[10] R. Franchi, A. Del Prete, and D. Umbrell. Inverse analysis procedure to determine flow stress and friction data for finite element modeling of machining. International Journal of Material Forming, 10:685–695, 2017. doi: 10.1007/s12289-016-1311-x.
[11] N. Souto, A. Andrade-Campos, and S. Thuillier. Mechanical design of a heterogeneous test for material parameters identification. International Journal of Material Forming, 10:353–367, 2017. doi: 10.1007/s12289-016-1284-9.
[12] M. Rackl, K.J. Hanley, and W.A. Günthner. Verification of an automated work flow for discrete element material parameter calibration. In: Li X., Feng Y., Mustoe G. (eds.), Proceedings of the 7th International Conference on Discrete Element Methods. DEM 2016, volume 188, pages 201–208. Springer, Singapore 2017. doi: 10.1007/978-981-10-1926-5_23.
[13] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.
[14] C. Richter, T. Rößler, G. Kunze, A. Katterfeld, and F. Will. Development of a standard calibration procedure for the DEM parameters of cohesionless bulk materials – Part II: Efficient optimization-based calibration. Powder Technology, 360:967–976, 2020. doi: 10.1016/j.powtec.2019.10.052.
[15] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-box function. Journal of Global Optimization, 13:455–492, 1998. doi: 10.1023/A:1008306431147.
[16] M.T.M. Emmerich, K.C. Giannakoglou, and B. Naujoks. Single- and multi-objective evolutionary optimization assisted by gaussian random field metamodels. IEEE Transactions on Evolutionary Computation, 10(4):421–439, 2006. doi: 10.1109/TEVC.2005.859463.
[17] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer Experiments. Springer, New York, 2018. doi: 10.1007/978-1-4939-8847-1.
[18] E. Brochu, V.M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report TR-2009-23, Department of Computer Science, University of British Columbia, Canada, November 2009.
[19] D. Ginsbourger, R. Riche, and L. Carraro. Kriging is well-suited to parallelize optimization. In Y. Tenne, Ch-K. Goh (eds.), Computational Intelligence in Expensive Optimization Problems, volume 2, pages 131–162, Springer-Verlag, Berlin, 2010.
[20] E. Roux and P.-O. Bouchard. Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. Journal of Materials Processing Technology, 213(7):1038–1047, 2013. doi: 10.1016/j.jmatprotec.2013.01.018.
[21] E. Roux and P.-O. Bouchard. On the interest of using full field measurements in ductile damage model calibration. International Journal of Solids and Structures, 72:50–62, 2015. doi: 10.1016/j.ijsolstr.2015.07.011.
[22] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409–423, 1989.
[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M. et al. (eds,), Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, volume 1917, pages 849–858. Springer, Berlin, Heidelberg, 2000. doi: 10.1007/3-540-45356-3_83.
[24] M. Hamdaoui, F.Z. Oujebbour, A. Habbal, P. Breitkopf, and P. Villon. Kriging surrogates for evolutionary multi-objective optimization of CPU intensive sheet metal forming applications. International Journal of Material Forming, 8:469–480, 2015. doi: 10.1007/s12289-014-1190-y.
[25] J.J. Droesbeke, M. Lejeune, and G. Saporta. Statistical Analysis of Spatial Data. Editions TECHNIP, 1997 (in French).
[26] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[27] J.D. Martin and T.W. Simpson. Use of kriging models to approximate deterministic computer models. AIAA Journal, 43(4):853–863, 2005. doi: 10.2514/1.8650.
[28] J. Laurenceau and P. Sagaut. Building efficient response surface of aerodynamic function with kriging and cokriging. AIAA Journal, 46(2):498–507, 2008. doi: 10.2514/1.32308.
[29] D.R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21:345–383, 2001. doi: 10.1023/A:1012771025575.
[30] V.A. Dirk and H.G. Beyer. A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications, 24:135–159, 2003. doi: 10.1023/A:1021810301763.
[31] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. doi: 10.1093/comjnl/7.4.308.
[32] P.-O. Bouchard, J.-M. Gachet, and E. Roux. Ductile damage parameters identification for cold metal forming applications. AIP Conference Proceedings, 1353(1):47–52, 2011. doi: 10.1063/1.3589490.
[33] D. Huang, T.T. Allan, W.I. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential kriging meta-models. Journal of Global Optimization, 34:441–466, 2006. doi: 10.1007/s10898-005-2454-3.
[34] H.H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3(3):175–184, 1960. doi: 10.1093/comjnl/3.3.175.
[35] M. Pillet. The Taguchi Method Experiment Plans. Les Edition d'Organisation, 2005 (in French).
[36] H. Digonnet, L. Silva, and T. Coupez. Cimlib: A Fully Parallel Application For Numerical Simulations Based On Components Assembly. AIP Conference Proceedings, 908:269–274, 2007. doi: 10.1063/1.2740823.
[37] P.-O. Bouchard, L. Bourgeon, S. Fayolle, and K. Mocellin. An enhanced Lemaitre model formulation for materials processing damage computation. International Journal of Material Forming, 4:299–315, 2011. doi: 10.1007/s12289-010-0996-5.
[38] E. Roux, M. Thonnerieux, and P.-O. Bouchard. Ductile damage material parameter identification: numerical investigation. In Proceedings of the Tenth International Conference on Computational Structures Technology, paper 135, Civil-Comp Press, 2010. doi: 10.4203/ccp.93.135.

Date

2020.05.15

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131689 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 2; 169-195
×