Details

Title

Transient analysis of transversely functionally graded Timoshenko beam (TFGTB) in conjunction with finite element method

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 3

Authors

Affiliation

Khafaji, Salwan Obaid Waheed : Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq. ; Al-Shujairi, Mohammed A. : Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq. ; Aubad, Mohammed Jawad : Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq.

Keywords

FGM beam ; transient response ; free vibration ; fundamental frequency ; finite element method ; Timoshenko beam theory

Divisions of PAS

Nauki Techniczne

Coverage

299-321

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] B.V. Sankar. An elasticity solution for functionally graded beams. Composites Science and Technology,61(5):689–96, 2001. doi: 10.1016/S0266-3538(01)00007-0.
[2] M. Şimşek. . Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences, 1(3):1–11, 2009.
[3] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[4] A. Chakrabarty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45(3):519–539, 2003. doi: 10.1016/S0020-7403(03)00058-4.
[5] M. Al-Shujairi and Ç. Mollamahmutoğlu. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 201:1018–1030, 2018. doi: 10.1016/j.compstruct.2018.06.035.
[6] H.T. Thai and T.P. Vo. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 62(1):57–66, 2012. doi: 10.1016/j.ijmecsci.2012.05.014.
[7] M. Al-Shujairi and Ç. Mollamahmutoğlu. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering, 154:292–312, 2018. doi: 10.1016/j.compositesb.2018.08.103.
[8] M. Şimşek and M. Al Shujairi. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering,108:18–34, 2017. doi: 10.1016/j.compositesb.2016.09.098.
[9] M. Aydogdu and V. Taskin. Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 28(5):1651–1656, 2007. doi: 10.1016/j.matdes.2006.02.007.
[10] M. Şimşek and T. Kocatürk. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90(4):465–473, 2009. doi: 10.1016/j.compstruct.2009.04.024.
[11] K.K. Pradhan and S. Chakrabaty. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51:175–184, 2013. doi: 10.1016/j.compositesb.2013.02.027.
[12] Y. Yang, C.C. Lam, K.P. Kou, and V.P. Iu. Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method. Composite Structures, 117:32–39, 2014. doi: 10.1016/j.compstruct.2014.06.016.
[13] L.L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6):488–502, 2009. doi: 10.1080/15376490902781175.
[14] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[15] M. Şimşek. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures, 133:968–78, 2015. doi: 10.1016/j.compstruct.2015.08.021.
[16] J. Yang, Y. Chen, Y. Xiang, and X.L. Jia. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1–2):166–181, 2008. doi: 10.1016/j.jsv.2007.10.034.
[17] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Composite Structures, 82(3):390–402, 2008. doi: 10.1016/j.compstruct.2007.01.019.
[18] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.
[19] A. Doroushi, M.R. Eslami, and A. Komeili. Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3):231–243, 2011. doi: 10.1177/1045389X11398162.
[20] M.J. Aubad, S.O.W. Khafaji, M.T. Hussein, and M.A. Al-Shujairi. Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method. Materials Research Express, 6(10):1065g4, 2019. doi: 10.1088/2053-1591/ab4234.
[21] Z. Su, G. Jin, and T. Ye. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions. Smart Materials and Structures, 25(6):065003, 2016. doi: 10.1088/0964-1726/25/6/065003.
[22] A. Daga, N. Ganesan, and K. Shankar. Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 10(3):173–185, 2009. doi: 10.1080/15502280902797207.
[23] Z.N. Li, Y.X. Hao, W. Zhang, and J.H. Zhang. Nonlinear transient response of functionally graded material sandwich doubly curved shallow shell using new displacement field. Acta Mechanica Solida Sinica, 31(1):108–126, 2018. doi: 10.1007/s10338-018-0008-8.
[24] Y. Huang and Y. Huang. A real-time transient analysis of a functionally graded material plate using reduced-basis methods. Advances in Linear Algebra & Matrix Theory, 5(3):98–108, 2015. doi: 10.4236/alamt.2015.53010.
[25] T. Yokoyama. Vibrations and transient response of Timoshenko beams resting on elastic foundation. Ingenieur Archiv, 57:81–90, 1987. doi: 10.1007/BF00541382.
[26] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1):412–425, 2011. doi: 10.1016/j.apm.2010.07.006.
[27] S. Taeprasartsit. Nonlinear free vibration of thin functionally graded beams using the finite element method. Journal of Vibration and Control, 21(1):29–46, 2015. doi: 10.1177/1077546313484506.
[28] N. Pradhan and S.K. Sarangi. Free vibration analysis of functionally graded beams by finite element method. IOP Conference Series: Materials Science and Engineering, 377:012211, 2018. doi: 10.1088/1757-899X/377/1/012211.
[29] N. Fouda, T. El-Midany, and A.M. Sadoun. Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4):274–282, 2017. doi: 10.22055/jacm.2017.21924.1121.
[30] L.L. Jing, P.J. Ming, W.P. Zhang, L.R. Fu, and Y.P. Cao. Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Composite Structures, 138:192–213, 2016. doi: 10.1016/j.compstruct.2015.11.027.
[31] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.
[32] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013. doi: 10.1016/j.compstruct.2013.06.029.
[33] Z. Friedman and J.B. Kosmatka. An improved two-node Timoshenko beam finite element. Computers & Structures, 47(3):473–481, 1993. doi: 10.1016/0045-7949(93)90243-7.
[34] Y.H. Lin. Vibration analysis of Timoshenko beams traversed by moving loads. Journal of Marine Science and Technology. 2(1):25–35, 1994.

Date

2020.08.13

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131694 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 3; 299-321
×