Details
Title
Force approximation of the human hand in contact with a climbing wall handleJournal title
Archive of Mechanical EngineeringYearbook
2020Volume
vol. 67Issue
No 3Authors
Affiliation
Orzechowski, Grzegorz : Department of Mechanical Engineering, LUT University, Lappeenranta, Finland. ; Orzechowski, Grzegorz : Mevea Ltd., Lappeenranta, Finland. ; Hämäläinen, Perttu : Department of Computer Science, Aalto University, Espoo, Finland. ; Mikkola, Aki : Department of Mechanical Engineering, LUT University, Lappeenranta, Finland.Keywords
wall climbing ; hand-to-handle interaction ; contact dynamics ; support force approximation ; quasi-static solutionDivisions of PAS
Nauki TechniczneCoverage
263-278Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] T. Bretl. Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbingrobot problem. The International Journal of Robotics Research, 25(4):317– 342, 2006. doi: 10.1177/0278364906063979.[2] K. Naderi, J.Rajamäki, and P. Hämäläinen. Discovering and synthesizing humanoid climbing movements. ACM Transactions on Graphics, Los Angeles, 36(4):art.43, 2017. doi: 10.1145/3072959.3073707.
[3] A.T. Miller and P. K. Allen. Graspit! A versatile simulator for robotic grasping. IEEE Robotics &\ Automation Magazine, 11(4):110–122, 2004. doi: 10.1109/MRA.2004.1371616.
[4] M.R. Cutkosky. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3):269–279, 1989.
[5] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and S. Schaal. Template-based learning of grasp selection. In 2012 IEEE International Conference onRobotics and Automation, pages 2379–2384, Saint Paul, USA, 14–18 May 2012. doi: 10.1109/ICRA.2012.6225271.
[6] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4304–4311, Seattle, USA, 26–30 May 2015. doi: 10.1109/ICRA.2015.7139793.
[7] V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani. Visual grasp planning for unknown objects using a multifingered robotic hand. IEEE/ASME Transactions on Mechatronics, 18(3):1050–1059, 2013. doi: 10.1109/TMECH.2012.2195500.
[8] J. DeGol, A. Akhtar, B. Manja, and T. Bretl. Automatic grasp selection using a camera in a hand prosthesis. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 431–434, Orlando, USA, 16-20 August 2016. doi: 10.1109/EMBC.2016.7590732.
[9] C. Ferrari and J. Canny. Planning optimal grasps. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pages 2290–2295, Nice, France, May 1992.
[10] R. Smith. Open Dynamics Engine: User Guide. 2006.
[11] C.J. Hasser. Force-Reflecting Antropomorphic Hand Masters. Technical Report AL/CF-TR- 1995-0110, Armstrong Laboratory, Ohio, USA, 1995.
[12] F. Wang, M. Shastri, C.L. Jones, V. Gupta, C. Osswald, X. Kang, D.G. Kamper, and N. Sarkar. Design and control of an actuated thumb exoskeleton for hand rehabilitation following stroke. In 2011 IEEE International Conference on Robotics and Automation, pages 3688–3693, Shanghai, China, 9-13 May 2011. doi: 10.1109/ICRA.2011.5980099.
[13] Y. Yoshii, H. Yuine, O. Kazuki, W-L. Tung, and T. Ishii. Measurement of wrist flexion and extension torques in different forearm positions. BioMedical Engineering OnLine, 14:art.115, 2015. doi: 10.1186/s12938-015-0110-9.
[14] S. Plagenhoef, F.G. Evans, and T. Abdelnour. Anatomical data for analyzing human motion. Research Quarterly for Exercise and Sport, 54(2):169–178, 1983. doi: 10.1080/02701367.1983.10605290.
[15] N. Niemi. Comparison of Open Dynamics Engine, Chrono and Mevea in simple multibody applications. PhD Thesis, LUT University, Lappeenranta, Finland, 2017.
[16] T. Erez, Y. Tassa, and E. Todorov. Simulation tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4397–4404, Seattle, USA, 26-30 May 2015. doi: 10.1109/ICRA.2015.7139807.
[17] E. Drumwright, J. Hsu, N. Koenig, and D. Shell. Extending open dynamics engine for robotics simulation. In: N. Ando, S. Balakirsky, T. Hemker, M. Reggiani, and O. von Stryk, editors, Simulation, Modeling, and Programming for Autonomous Robots, Lecture Notes in Computer Science, 6472:38–50. Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-17319-6_7.
[18] M.J. Carré, S.E. Tomlinson, J.W. Collins, and R. Lewis. An assessment of the performance of grip enhancing agents used in sports applications. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 226(7):616–625, 2012. doi: 10.1177/1350650112439647.
[19] F.K. Fuss, G. Niegl, and A.M. Tan. Friction between hand and different surfaces under different conditions and its implication for sport climbing. In: The Engineering of Sport 5, volume 2, pages 269–275, University of California, Davis, 2004.
[20] M.G.E. Schneiders, M.J.G. van de Molengraft, and M. Steinbuch. Benefits of over-actuation in motion systems. In Proceedings of the 2004 American Control Conference, volume 1, pages 505–510, Boston, USA, June 2004. doi: 10.23919/ACC.2004.1383653.
[21] A.E. Flatt. Grasp. Baylor University Medical Center Proceedings, 13(4):343–348, 2000. doi: 10.1080/08998280.2000.11927702.
[22] M. Duan. Energy-Optimal Control of Over-Actuated Systems – with Application to a Hybrid Feed Drive. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, USA, 2018.
[23] N. Hansen. The CMA Evolution Strategy: A Comparing Review. In: J.A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors, Towards a New Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pages 75–102. Springer, Berlin, Heidelberg, 2006. doi: 10.1007/3-540-32494-1_4.