Szczegóły

Tytuł artykułu

Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2021

Wolumin

vol. 68

Numer

No 1

Autorzy

Słowa kluczowe

static analysis ; functionally graded plated ; Winkler-Pasternak foundation ; physical neutral surface ; four-variable refined theory

Wydział PAN

Nauki Techniczne

Zakres

5-22

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.
[2] S-H. Chi and Y-L.Chung. Mechanical behavior of functionally graded material plates under transverse load – Part I: Analysis. International Journal of Solids and Structures, 43(13):3657–3674, 2006. doi: 10.1016/j.ijsolstr.2005.04.011.
[3] V-L. Nguyen and T-P. Hoang. Analytical solution for free vibration of stiffened functionally graded cylindrical shell structure resting on elastic foundation. SN Applied Sciences, 1(10):1150, 2019. doi: 10.1007/s42452-019-1168-y.
[4] A.M. Zenkour and N.A. Alghamdi. T hermoelastic bending analysis of functionally graded sandwich plates. Journal of Materials Science, 43(8):2574–2589, 2008. doi: 10.1007/s10853-008-2476-6.
[5] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[6] I. Mechab, H.A. Atmane, A. Tounsi, H.A. Belhadj, E.A. Adda Bedia. A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mechanica Sinica, 26(6):941–949, 2010. doi: 10.1007/s10409-010-0372-1.
[7] M.T. Tran, V.L. Nguyen, and A.T. Trinh. Static and vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners resting on Winkler–Pasternak elastic foundations. International Journal of Advanced Structural Engineering, 9(2):153–164, 2017. doi: 10.1007/s40091-017-0155-z.
[8] A. Gholipour, H. Farokhi, and M.H. Ghayesh. In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dynamics, 79(3):1771–1785, 2015. doi: 10.1007/s11071-014-1773-7.
[9] M.T. Tran, V.L. Nguyen, S.D. Pham, and J. Rungamornrat. Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners. Acta Mechanica, 231:2545–2564, 2020. doi: 10.1007/s00707-020-02658-y.
[10] S-H. Chi and Y-L. Chung. Mechanical behavior of functionally graded material plates under transverse load – Part II: Numerical results. International Journal of Solids and Structures, 43(13):3675–3691, 2006. doi: 10.1016/j.ijsolstr.2005.04.010.
[11] S. Hosseini-Hashemi, H.R.D Taher, H. Akhavan, and M. Omidi. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Applied Mathematical Modelling, 34(5):1276–1291, 2010. doi: 10.1016/j.apm.2009.08.008.
[12] M.S.A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, and E.A. Adda Bedia. Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates. Journal of Thermal Stresses, 34(4):315–334, 2011. doi: 10.1080/01495739.2010.550806.
[13] M.Talha and B.N. Singh. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Applied Mathematical Modelling, 34(12):3991–4011, 2010. doi: 10.1016/j.apm.2010.03.034.
[14] H-T. Thai and S-E. Kim. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. textit{Composite Structures, 96:165–173, 2013. doi: 10.1016/j.compstruct.2012.08.025.
[15] A. Chikh, A. Tounsi, H. Hebali, and S.R. Mahmoud. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3):289–297, 2017. doi: 10.12989/sss.2017.19.3.289.
[16] H.H. Abdelaziz, M.A.A. Meziane, A.A. Bousahla, A. Tounsi, S.R. Mahmoud, and A.S. Alwabli. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel and Composite Structures, 25(6):693–704, 2017. doi: 10.12989/scs.2017.25.6.693.
[17] D-G. Zhang, Y-H. Zhou. A theoretical analysis of FGM thin plates based on physical neutral surface. Computational Materials Science, 44(2):716–720, 2008. doi: 10.1016/j.commatsci.2008.05.016.
[18] A.A. Bousahla, M.S.A. Houari, A. Tounsi A, E.A. Adda Bedia. A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. International Journal of Computational Methods, 11(06):1350082, 2014. doi: 10.1142/S0219876213500825.
[19] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[20] D-G. Zhang. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica, 49(2):283–293, 2014. doi: 10.1007/s11012-013-9793-9.
[21] D-G. Zhang. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Composite Structures, 100:121–126, 2013. doi: 10.1016/j.compstruct.2012.12.024.
[22] H-T. Thai and B. Uy. Levy solution for buckling analysis of functionally graded plates based on a refined plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(12):2649–2664, 2013. doi: 10.1177/0954406213478526.
[23] Y. Khalfi, M.S.A. Houari, and A. Tounsi. A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation. International Journal of Computational Methods, 11(05):1350077, 2014. doi: 10.1142/S0219876213500771.
[24] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, and A. Tounsi. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(1):265–275, 2016. doi: 10.1007/s40430-015-0354-0.
[25] H. Shahverdi and M.R. Barati. Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science, 120:82–99, 2017. doi: 10.1016/j.ijengsci.2017.06.008.
[26] R.P. Shimpi and H.G. Patel. A two variable refined plate theory for orthotropic plate analysis. International Journal of Solids and Structures, 43(22-23):6783–6799, 2006. doi: 10.1016/j.ijsolstr.2006.02.007.
[27] H-T. Thai and D-H. Choi. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71(16):1850–1858, 2011. doi: 10.1016/j.compscitech.2011.08.016.
[28] M.H. Ghayesh. Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams. The European Physical Journal Plus, 134(8):401, 2019. doi: 10.1140/epjp/i2019-12472-x .
[29] M.H. Ghayesh. Nonlinear oscillations of FG cantilevers. Applied Acoustics, 145:393–398, 2019. doi: 10.1016/j.apacoust.2018.08.014.
[30] M.H. Ghayesh. Dynamical analysis of multilayered cantilevers. Communications in Nonlinear Science and Numerical Simulation, 71:244–253, 2019. doi: 10.1016/j.cnsns.2018.08.012.
[31] M.H. Ghayesh. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics – A/Solids, 73:492–499, 2019. doi: 10.1016/j.euromechsol.2018.09.001.
[32] M.H. Ghayesh. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science, 124:115–131, 2018. doi: 10.1016/j.ijengsci.2017.11.004.
[33] A.T. Trinh, M.T. Tran, H.Q. Tran, and V.L. Nguyen. Vibration analysis of cross-ply laminated composite doubly curved shallow shell panels with stiffeners. Vietnam Journal of Science and Technology, 55(3):382–392, 2017. doi: 10.15625/2525-2518/55/3/8823.

Data

08.04.2021

Typ

Article ; Artykuł /Article

Identyfikator

DOI: 10.24425/ame.2020.131706 ; ISSN 0004-0738, e-ISSN 2300-1895
×