Tytuł artykułu

Recent advances in mode converters for a mode division multiplex transmission system

Tytuł czasopisma

Opto-Electronics Review








Memon, A.K. : School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China ; Chen, K.X. : School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China


Słowa kluczowe

integrated optical device ; mode converters ; mode division multiplex ; optical waveguide

Wydział PAN

Nauki Techniczne




[1] Essiambre, R. -J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010). [2] CISCO: Cisco Visual Netwroking Index: Forecast and Trends, 2017–2022 White Paper [Online]. Available at: (Accessed: 19th September 2020) [3] Agrell, E. et al. Roadmap of optical communications. J. Opt. 18, 063002 (2016). [4] Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3–10 (2010). 10.1002/bltj.20400 [5] Yu, J. & Zhang, J. Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65–76 (2016). [6] Abbas, H. S. & Gregory, M. A. The next generation of passive optical networks: A review. J. Netw. Comput. Appl. 67, 53–74 (2016). [7] Sillard, P. Next-generation fibers for space-division-multiplexed transmissions. J. Lightwave Technol. 33, 1092–1099 (2015). [8] Richardson, D., Fini, J. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013). [9] Klaus, W. et al. Advanced space division multiplexing technologies for optical networks. J. Opt. Commun. Netw. 9, C1–C11 (2017). [10] Nakazawa, M. Exabit optical communication explored using 3M scheme. Jap. J. Appl. Phys. 53, , 08MA01 (2014). 10.7567/JJAP.53.08MA01 [11] Winzer, P. J. Optical networking beyond WDM. IEEE Photonics J. 4, 647–651 (2012). [12] Chiang, K. S. Polymer optical waveguide devices for mode-division-multiplexing applications. Proc. SPIE 10242, Integrated Optics: Physics and Simulations III, 102420R (2017). [13] Sabitu, R., Khan, N. & Malekmohammadi, A. Recent progress in optical devices for mode division multiplex transmission system. Opto-Electron. Review 27, 252–267 (2019). 10.1016/j.opelre.2019.07.001 [14] Ryf, R., Fontaine, N. K., Guan, B., Huang, B. & Tkach, R. W. 305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre. in The European Conference on Optical Communication (ECOC), 1–3 (2014). [15] Hayashi, T. et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35, 748–754 (2017). JLT.2016.2617894 [16] Soma, D. et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol. 36, 1362–1368 (2018). [17] Van Uden, R. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014). [18] Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283–311 (2014). [19] Luo, L. -W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1–7 (2014). 10.1038/ncomms4069 [20] Hsu, Y. et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 30, 1052–1055 (2018). LPT.2018.2829508 [21] Zhang, W., Ghorbani, H., Shao, T. & Yao, J. On-Chip 4×10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2020). [22] Huang, Y., Xu, G. & Ho, S. -T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 18, 2281–2283 (2006). [23] Oner, B., Üstün, K., Kurt, H., Okyay, A. K. & Turhan-Sayan, G. Large bandwidth mode order converter by differential waveguides. Opt. Express 23, 3186–3195 (2015). OE.23.003186 [24] Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K. & Koshiba, M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421–2426 (2012). [25] Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J. & Wang, W. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40, 518-521 (2015). [26] Guo, F. et al. An MMI-based mode (DE) MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol. Lett. 28, 2443–2446 (2016). [27] Chack, D., Hassan, S. & Qasim, M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt. 59, 3652–3659 (2020). [28] Linh, H. D. T., Dung, T. C., Tanizawa, K., Thang, D. D. & Hung, N. T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1× 4 Y-Junction and 4× 4 MMI Couplers. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2019). [29] González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 1–10 (2018). [30] Leuthold, J., Eckner, J., Gamper, E., Besse, P. A. & Melchior, H. Multimode interference couplers for the conversion and combining of Zero- and First-Order modes. J. Lightwave Technol. 16, 1228–1239 (1998). [31] Guo, F. et al.Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates. Chin. Phys. Lett. 33, 024203 (2016). [32] Chen, H. -T. & Webb, K. J. Silicon-on-insulator irregular waveguide mode converters. Opt. Lett. 31, 2145–2147 (2006). [33] Chen, D. et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 23, 11152–11159 (2015). [34] Chen, Z. Y. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and Terabit WDM-MDM system demonstration. J. Lightwave Technol. 36, 2757–2766 (2018). [35] Zhu, D. et al. Design of compact TE-polarized mode-order converter in silicon waveguide with high refractive index material. IEEE Photonics J. 10, 1–7 (2018). JPHOT.2018.2883209 [36] Abu-Elmaaty, B. E., Sayed, M. S., Pokharel, R. K. & Shalaby, H. M. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 58, 1763–1771 (2019). [37] Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434–34441 (2019). [38] Ye, W., Yuan, X., Gao, Y. & Liu, J. Design of broadband silicon-waveguide mode-order converter and polarization rotator with small footprints. Opt. Express 25, 33176–33183 (2017). [39] Liu, L. et al. Design of a compact silicon-based TM-polarized mode-order converter based on shallowly etched structures. Appl. Opt. 58, 9075–9081 (2019). [40] Hao, L. et al. Efficient TE-polarized mode-order converter based on high-index-contrast polygonal slot in a silicon-on-insulator waveguide. IEEE Photonics J. 11, 1–10 (2019). [41] Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). [42] Jia, H. et al. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 44, 4179–4182 (2019). 10.1364/OL.44.004179 [43] Zhang, M. R., Chen, K. X., Jin, W. & Chiang, K. S. Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Appl. Opt. 55, 4418–4422 (2016). 10.1364/AO.55.004418 [44] Hanzawa, N. et al. Two-mode PLC-based mode multi/ demultiplexer for mode and wavelength division multiplexed transmission. Opt. Express 21, 25752–25760 (2013). [45] Saitoh, K. et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 22, 19117–19130 (2014). [46] Hanzawa, N. et al. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22, 29321–29329 (2014). [47] Hanzawa, N. et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip. J. Lightwave Technol. 33, 1161–1165 (2015). [48] Saitoh, K. et al. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 35, 80–92 (2017). [49] Riesen, N., Gross, S., Love, J. D. & Withford, M. J. Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855–29861 (2014). [50] Dong, J. L., Chiang, K. S. & Jin, W. Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33, 4580–4588 (2015). [51] Wei, F. K., Chen, K. X. & Chiang, K. S. Mode conversion with vertical polymer-waveguide directional coupler. in Asia Communication and Photonics Conference, AF1G.3 (2016). [52] Huang, Q. D., Wu, Y. F., Jin, W. & Chiang, K. S. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol. 36, 2903–2911 (2018). 10.1109/JLT.2018.2829143 [53] Zhao, W. K., Chen, K. X., Wu, J. Y. & Chiang, K. S. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing. IEEE Photonics J. 9, 1–9 (2017). [54] Zhao, W. K., Chen, K. X. & Wu, J. Y. Broadband mode multiplexer formed with non-planar tapered directional couplers. IEEE Photonics Technol. Lett. 31, 169–172 (2018). 10.1109/LPT.2018.2887352 [55] Yin, M., Deng, Q., Li, Y., Wang, X. & Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling. Appl. Opt. 53, 6175–6180 (2014). [56] Wang, J., Chen, P., Chen, S., Shi, Y. & Dai, D. X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 22, 12799–12807 (2014). OE.22.012799 [57] Garcia-Rodriguez, D., Corral, J. L. Griol, A. & Llorente, R. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm. Opt. Lett. 42, 1221–1224 (2017). 10.1364/OL.42.001221 [58] Luo, L. -W., Gabrielli, L. H. & Lipson, M. On-chip mode-division multiplexer. in Conference on Lasers and Electro-Optics (CLEO 2013) CTh1C.6. (2013). CTh1C.6 [59] Yu, Y., Ye, M. & Fu, S. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photonics Technol. Lett. 27, 1957–1960 (2015). LPT.2015.2448076 [60] Yang, Y., Chen, K. X., Jin, W. & Chiang, K. S. Widely wavelength-tunable mode converter based on polymer waveguide grating. IEEE Photonics Technol. Lett. 27, 1985–1988 (2015). 10.1109/LPT.2015.2448793 [61] Jin, W. & Chiang, K. S. Mode converter with sidewall-corrugated polymer waveguide grating. in Opto-Electronics Communication Conference (OECC2015), 1–3 (2015). OECC.2015.7340081 [62] Jin, W. & Chiang, K. S. Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41, 3130–3133 (2016). [63] Wang, W., Wu, J. Y., Chen, K. X., Jin, W. & Chiang, K. S. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Opt. Express 25, 14341–14350 (2017). [64] Zhao, W. K., Chen, K. X. & Wu, J. Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion. App. Phys. B 125, 177 (2019). [65] Jin, W. & Chiang, K. S. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt. Express 26, 15289–15299 (2018). [66] Castro, J. M. et al. Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 13, 4180–4184 (2005). [67] Xiao, R. et al. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 27, 1941–1957 (2019). [68] Wang, H. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 7, 1801191 (2019). [69] Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617–27631 (2014). [70] Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016). [71] Qiu, H. et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21, 17904–17911 (2013). [72] Zhao, W. K., Feng, J., Chen, K. X. & Chiang, K. S. Reconfigurable broadband mode (de) multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Opt. Lett. 43, 2082–2085 (2018). [73] Zi, X. Z., Wang, L. F., Chen, K. X. & Chiang, K. S. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photonics Technol. Lett. 30, 618–621 (2018). [74] Jin, W. & Chiang, K. S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett. 40, 237–240 (2015). [75] Jin, W. & Chiang, K. S. Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Top. Quantum Electron. 26, 1–6 (2020). JSTQE.2020.2969568 [76] Zhang, M. R., Ai, W., Chen, K. X., Jin, W. & Chiang, K. S. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photonics Technol. Lett. 30, 1764–1767 (2018). [77] Lee, B. -T. & Shin, S. -Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003). 10.1364/OL.28.001660 [78] Low, A. L., Yong, Y. S., You, A. H., Chien, S. F. & Teo, C. F. A five-order mode converter for multimode waveguide. IEEE Photonics Technol. Lett. 16, 1673–1675 (2004). 10.1109/LPT.2004.828512 [79] Riesen, N. & Love, J. D. Design of mode-sorting asymmetric Y-junctions. App. Opt. 51, 2778–2783 (2012). 10.1364/AO.51.002778 [80] Driscoll, J. B. et al. .Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013). [81] Feng, J., Chen, K. X., Ren, K. Y. & Chiang, K. S. Mode (de) multiplexer based on polymer-waveguide asymmetric Y-junction. in Asia Communication and Photonics Conference AF1G.5 (2016). [82] Chen, W. W. et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 41, 2851–2854 (2016). [83] Fujisawa, T. et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator. J. Lightwave Technol. 36, 1985–1992 (2018). [84] Gao, Y. et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators. Opt. Commun. 451, 41–45 (2019). j.optcom.2019.06.010 [85] Watanabe, T. & Kokubun, Y. Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide. IEEE Photonics J. 7, 1–11 (2015). JPHOT.2015.2497234 [86] Dai, D. X., Tang, Y. B. & Bowers, J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20, 13425–13439 (2012). [87] Dai, D. X. & Mao, M. Mode converter based on an inverse taper for multimode silicon Nanophotonicsic integrated circuits Opt. Express 23, 28376–28388 (2015). OE.23.028376






DOI: 10.24425/opelre.2021.135825 ; ISSN 1896-3757


Opto-Electronics Review; 2021; 29; 1; 13-32