### Details

#### Title

Six-phase doubly fed induction machine-based standalone DC voltage generator#### Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences#### Yearbook

2021#### Volume

69#### Issue

No. 1#### Affiliation

Maciejewski, Paweł : Warsaw University of Technology, Institute of Control and Industrial Electronics, 75, Koszykowa St., 00-662 Warszawa, Poland ; Iwański, Grzegorz : Warsaw University of Technology, Institute of Control and Industrial Electronics, 75, Koszykowa St., 00-662 Warszawa, Poland#### Authors

#### Keywords

six-phase induction machine ; induction generator ; torque oscillations ; DC voltage generation#### Divisions of PAS

Nauki Techniczne#### Coverage

e135839#### Bibliography

- G.D. Marques, D. Sousa, and M. F. Iacchetti, “Sensorless torque control of a DFIG connected to a DC link”,
*IEEE Int. Symp. on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics – SLED/PRECEDE’13*, Munich, Germany, 2013, pp. 1‒7. - M.F. Iacchetti and G.D. Marques, “Enhanced torque control in a DFIG connected to a DC grid by a diode rectifier”,
*16*, Lappeenranta, Finland, 1‒9 (2014).^{th}Europ. Conf. Power Electron. and Appl. – EPE’14 - G.D. Marques and M.F. Iacchetti, “A self-sensing stator-current-based control system of a DFIG connected to a DC-link”,
*IEEE Trans. Ind. Electron.*62(10), 6140–6150 (2015). - Y. Li,
*et al*, “The capacity optimization for the static excitation controller of the dual-stator-winding induction generator operating in a wide speed range”,*IEEE Trans. Ind. Electron.*56(2), 530–541 (2009). - H. Misra, A. Gundavarapu, and A.K. Jain, “Control scheme for DC voltage regulation of stand-alone DFIG-DC system”,
*IEEE Trans. Ind. Electron.*64(4), 2700–2708 (2017). - N. Yu, H. Nian, and Y. Quan, “A novel DC grid connected DFIG system with active power filter based on predictive current control”,
*Int. Conf. Electr. Machines and Systems – ICEMS’11*, Beijing, China, 2011, pp. 1–5. - M.F. Iacchetti, G.D. Marques, and R. Perini, “Torque ripple reduction in a DFIG-DC system by resonant current controllers”,
*IEEE Trans. Power Electron.*30(8), 4244–4254 (2015). - C. Wu and H. Nian, “Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of dfig-dc system”,
*IEEE Trans. Power Electron.*34(9), 8739–8748 (2019). - C. Wu,
*et al*, “Adaptive repetitive control of DFIG-DC system considering stator frequency variation”,*IEEE Trans. Power Electron.*34(4), 3302‒3312 (2018). - A. Gundavarapu, H. Misra, and A. K. Jain, “Direct torque control scheme for dc voltage regulation of the standalone DFIG-DC system”,
*IEEE Trans. Ind. Electron.*64(5), 3502–3512 (2017). - P. Maciejewski and G. Iwanski, “Direct torque control for autonomous doubly fed induction machine based DC generator”,
*12*, Monte Carlo, Monaco, 2017, pp. 1–6.^{th}Int. Conf. Ecological Vehicles and Renewable Energies – EVER’17 - P. Maciejewski and G. Iwanski, “Study on direct torque control methods of a doubly fed induction machine working as a stand-alone DC voltage generator”,
*IEEE Trans. Energy Conv.*(to be published), doi: 10.1109/TEC.2020.3012589. - M. Gwóźdź
*et al*, “Generator with modulated magnetic flux for wind turbines”,*Bull. Pol. Ac.: Tech.*65(4), 469–478 (2017). - E. Levi,
*et al*, “Multiphase induction motor drives – a technology status review”,*IET Electric Power Applications*1(4), 489–516 (2007). - F. Bu, Y. Hu, W. Huang, S. Zhuang, and K. Shi, “Wide-speed-range-operation dual stator-winding induction generator DC generating system for wind power applications”,
*IEEE Trans. Power Electron.*30(2), 561–573 (2015). - B. Zhang
*et al.*, “Comparison of 3-, 5-, and 6-phase machines for automotive charging applications”,*IEEE Int .Electric Machines and Drives Conf.*3, 1357–1362 (2003). - K.S. Khan, W.M. Arshad, and S. Kanerva, “On performance figures of multiphase machines”,
*18*^{th}Int. Conf.*Electr. Machines – ICELMACH’*0*8*, Vilamoura, Portugal, 2008, pp. 1‒5. - S. Williamson and S. Smith, “Pulsating torque and losses in multiphase induction machines”,
*IEEE Trans. Ind. Appl.*39(4), 986–993 (2003). - P.G. Holmes and N.A. Elsonbaty, “Cycloconvertor-excited divided-winding doubly-fed machine as a wind-power convertor”,
*IEE Proc. B Electr. Power Appl.*131(2), 61–69 (1984). - P. Maciejewski and G. Iwanski, “Modeling of six-phase double fed induction machine for autonomous DC voltage generation”,
*1*0, Monte Carlo, Monaco, 2015, pp. 1–6.^{th}Int. Conf. Ecological Vehicles and Renewable Energies – EVER’15 - G.D. Marques and M.F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features”,
*IEEE Trans. Power Electron.*34(2), 1299‒1316 (2019). - N.K. Mishra, Z. Husain, and M. Rizwan Khan, “DQ reference frames for the simulation of multiphase (six phase) wound rotor induction generator driven by a wind turbine for disperse generation”,
*Electr. Power Appl. IET*, 13(11), 1823‒1834, (2019). - R. Bojoi,
*et al*, “Dual-three phase induction machine drives control; A survey”,*IEEJ Trans. Ind. Appl.*126(4), 420–429 (2006). - R. Nelson and P. Krause, “Induction machine analysis for arbitrary displacement between multiple winding sets”,
*IEEE Trans. Power Appar. Syst.*93(3), 841–848 (1974). - D. Forchetti, G. García, and M.I. Valla, “Vector control strategy for a doubly-fed stand-alone induction generator”,
*Ind. Electron. Conf. – IECON’12*, Montreal, Canada, 2, 2002, pp. 991–995.